Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1110k+Views

1918k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how a triglyceride is synthesised and describes the differences between saturated and unsaturated lipids. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and links are also made to related future topics such as the use of lipids as a substrate for respiration and the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of lipids mean that these molecules have numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Capillaries, arteries & veins (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Capillaries, arteries & veins (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson explores how the structure of capillaries, arteries and veins relate to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.7 of the Edexcel International A-level Biology specification. This lesson has been written to build on any prior knowledge from iGCSE or earlier in this topic to enable students to fully understand each type of blood vessel has its particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of GUESS WHO is used to introduce smooth muscle and collagen as the substances that are found in the tunica media and externa and again the reason for their presence is explored and explained. The next part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. Valves are introduced and important mechanisms like the skeletal muscle pump are discussed to ensure that students can understand how the return of blood to the right atrium of the heart is maintained.
Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)

(0)
This lesson describes the role of haemoglobin in transport and explains the change in the dissociation curve when there is an increased concentration of carbon dioxide (the Bohr effect). The detailed PowerPoint and accompanying resources have been designed to cover points 1.9 (i) & (ii) of the Edexcel International A-level Biology specification and this lesson also compares the oxyhaemoglobin dissociation curve of foetal haemoglobin against maternal haemoglobin. The lesson begins with a version of the quiz show Pointless and this introduces haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure as it is formed of 4 polypeptide chains which each contain a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. Moving forwards, the different ways that carbon dioxide is transported around the body involving haemoglobin are described and the dissociation of carbonic acid into hydrogen ions is discussed so that students can understand how this will affect the affinity of haemoglobin for oxygen in the final part of the lesson on the Bohr effect. A quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Calculating biodiversity (Edexcel A level Biology A)
GJHeducationGJHeducation

Calculating biodiversity (Edexcel A level Biology A)

(0)
This fully-resourced lesson explains the meaning of biodiversity and describes how it can be calculated within a habitat and within a species. The engaging PowerPoint and accompanying resources have been designed to cover point 4.2 of the Pearson Edexcel A-level Biology A specification and in addition to biodiversity, the meaning of endemism is also explained. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, population, biodiversity, endemic, heterozygote and natural selection and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness, the heterozygosity index and an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Classification hierarchy (Edexcel A level Biology B)
GJHeducationGJHeducation

Classification hierarchy (Edexcel A level Biology B)

(0)
This lesson describes the classification system that consist of a hierarchy of domain, kingdom, phylum, class, order, family, genus and species. The engaging PowerPoint and accompanying resource have been designed to cover point 3.1 (i) of the Edexcel A-level Biology B specification and also includes details of the use of the binomial naming system. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a male horse and a female donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Evolution, natural selection & adaptations (Edexcel A level Biology B)
GJHeducationGJHeducation

Evolution, natural selection & adaptations (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations. President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3… Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Starch & cellulose (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch & cellulose (Edexcel A-level Biology A)

(0)
This detailed lesson describes the relationship between the structure and function of starch and cellulose. The engaging PowerPoint and accompanying resource have been designed to cover point 4.9 of the Pearson Edexcel A-level Biology A specification and focuses on the importance of the glycosidic and hydrogen bonds for the structure of these polysaccharides. The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril. The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
Reproductive isolation, allopatric & sympatric speciation (Edexcel A level Biology B)
GJHeducationGJHeducation

Reproductive isolation, allopatric & sympatric speciation (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how reproductive isolation can lead to allopatric and sympatric speciation. The engaging PowerPoint and accompanying resources have been designed to cover point 3.2 (iii) of the Edexcel A-level Biology B specification. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Cohesion-tension model (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cohesion-tension model (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the cohesion-tension model explains the transport of water from the roots to the shoots. The detailed PowerPoint and accompanying resources have been designed to cover point 4.7 (iii) of the Edexcel A-level Biology B specification This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and then the main focus is the interaction between cohesion and tension. The role of adhesive forces in capillary action is also explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues.
Bohr effect (Edexcel A-level Biology B)
GJHeducationGJHeducation

Bohr effect (Edexcel A-level Biology B)

(0)
This lesson describes how an increased carbon dioxide concentration affects the dissociation of oxyhaemoglobin, the Bohr effect. The PowerPoint and accompanying resources have been designed to cover the second part of point 4.5 (i) of the Edexcel A-level Biology B specification and continually ties in with the previous lesson on the role of haemoglobin and dissociation curves. The lesson begins with a terminology check to ensure that the students can use the terms affinity, oxyhaemoglobin and dissociation. In line with this, they are challenged to draw the oxyhaemoglobin dissociation curve and are reminded that this shows how oxygen associates with haemoglobin but how it dissociates at low partial pressures. Moving forwards, a quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. Opportunities are taken at this point to challenge students on their prior knowledge of protein structures as well as the bonds in the tertiary structure. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Properties and action of enzymes (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Properties and action of enzymes (Pearson Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the action of enzymes as biological catalysts and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.10 (i) and (ii) of the Pearson Edexcel A-level Biology A specification but also introduces some examples of intracellular and extracellular enzymes to prepare students for the next lesson which covers 2.10 (iii). The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication.
Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)
GJHeducationGJHeducation

Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)

18 Resources
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow. Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include: differentiated exam-style questions with clear mark schemes directed discussion points quiz competitions to introduce key terms and values current understanding and prior knowledge checks Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
Properties of enzymes (AQA A-level Biology)
GJHeducationGJHeducation

Properties of enzymes (AQA A-level Biology)

(0)
This fully-resourced lesson explains how an enzyme’s specificity is related to their 3D structure and enables them to act as biological catalysts. The engaging PowerPoint and accompanying resources have been designed to cover the first parts of specification point 1.4.2 and considers the details of Fischer’s lock and key hypothesis and Koshland’s induced-fit model to deepen student understanding of the mechanism of enzyme action The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure and globular proteins. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication before they are challenged on their knowledge of carbohydrates, lipids and proteins from topics 1.2 - 1.4 as they have to recognise some extracellular digestive enzymes.
The chloroplast & photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

The chloroplast & photosynthesis (CIE A-level Biology)

(0)
This lesson describes the structure of the chloroplast, focusing on the sites of the light-dependent and light-independent stages of photosynthesis. This fully-resourced lesson, which consists of an engaging PowerPoint and accompanying resources, has been designed to cover points 13.1 (a) & (b) of the CIE A-level Biology specification and has been specifically designed to introduce students to the grana and stroma as the site of the light-dependent and light-independent stages respectively before they are covered in greater detail in the lessons that are taught later in topic 13.1. Students were introduced to eukaryotic cells and their organelles in topic 1 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. Links to other topics are made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch, as originally covered in topic 2.2
Photosynthesis: Light-dependent stage (CIE A-level Biology)
GJHeducationGJHeducation

Photosynthesis: Light-dependent stage (CIE A-level Biology)

(0)
This lesson describes the light-dependent stage, focusing on photoactivation of chlorophyll, photolysis of water and the production of ATP and reduced NADP. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 13.1 (f) of the CIE A-level Biology specification and also describes cyclic and non-cyclic photophosphorylation The light-dependent stage of photosynthesis is a process which students can find difficult to understand in the necessary detail so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as eukaryotic cell structures and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic photophosphorylation. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take up to 3 hours of allocated A-level teaching time to complete.
The Calvin cycle (CIE A-level Biology)
GJHeducationGJHeducation

The Calvin cycle (CIE A-level Biology)

(0)
This fully-resourced lesson describes the three main stages of the Calvin cycle as fixation, reduction and regeneration. The detailed PowerPoint and accompanying resources have been designed to cover the content of point 13.1 (g) of the CIE A-level Biology specification and detailed planning ensures that continual links are made to the previous lesson on the light-dependent stage so that students understand how the products of that stage, ATP and reduced NADP, are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the Calvin cycle. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with discussion points where the class are given time to discuss the answer to selected questions, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed.
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Topic 13: Photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

Topic 13: Photosynthesis (CIE A-level Biology)

5 Resources
This bundle contains 5 fully-resourced lessons which are highly detailed and will engage and motivate the students whilst the following content that is set out in topic 13 of the CIE A-level Biology specification is covered: Topic 13.1 Energy transferred as ATP and reduced NADP from the light dependent stage is used during the Calvin cycle to produce complex organic molecules The sites of the light-dependent and light-independent stages of photosynthesis The light-dependent stage as the photoactivation of chlorophyll, the photolysis of water and the transfer of energy to ATP and reduced NADP Cyclic and non-cyclic photophosphorylation The three main stages of the Calvin cycle The conversion of Calvin cycle intermediates to carbohydrates, lipids and amino acids Topic 13.2 Explain the term limiting factor in relation to photosynthesis Explain the effects of changes in light intensity, carbon dioxide concentration and temperature on the rate of photosynthesis Explain how an understanding of limiting factors is used to increase crop yields in protected environments The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions, whole class discussion periods and quiz competitions which are designed to introduce key terms and values in a memorable way.
Topics 12 & 13: Respiration and photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

Topics 12 & 13: Respiration and photosynthesis (CIE A-level Biology)

14 Resources
Respiration and photosynthesis are two of the most commonly-assessed topics in the terminal A-level exams but are often poorly understood by students. These 14 lessons have been intricately planned to contain a wide range of activities that will engage and motivate the students whilst covering the key detail to try to deepen their understanding and includes exam-style questions so they are fully prepared for these assessments. The following specification points in topics 12 and 13 of the CIE A-level Biology course are covered by these lessons: The need for energy in living organisms The features of ATP The synthesis of ATP by substrate-level phosphorylation in glycolysis and the Krebs cycle The roles of the coenzymes in respiration The synthesis of ATP through the electron transport chain in the mitochondria and chloroplasts The relative energy values of carbohydrates, lipids and proteins as respiratory substrates Determining the respiratory quotient from equations for respiration The four stages of aerobic respiration An outline of glycolysis When oxygen is available, pyruvate is converted into acetyl CoA in the link reaction The steps of the Krebs cycle Oxidative phosphorylation The relationship between the structure and function of the mitochondrion Distinguish between aerobic and anaerobic respiration in mammalian tissue and in yeast cells Anaerobic respiration generates a small yield of ATP and builds up an oxygen debt The products of the light-dependent stage are used in the Calvin cycle The structure of a chloroplast and the sites of the light-dependent and light-independent stages of photosynthesis The light-dependent stage of photosynthesis The three stages of the Calvin cycle The conversion of Calvin cycle intermediates to carbohydrates, lipids and amino acids Explain the term limiting factor in relation to photosynthesis Explain the effects of changes in light intensity, carbon dioxide concentration and temperature on the rate of photosynthesis Explain how an understanding of limiting factors is used to increase crop yields in protected environments Due to the detail of these lessons, it is estimated that it will take up to 2 months of allocated A-level teaching time to cover the detail included in the slides of these lessons If you would like to sample the quality of the lessons, download the roles of the coenzymes, the Krebs cycle and the products of the Calvin cycle lessons as these have been shared for free
Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)
GJHeducationGJHeducation

Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)

11 Resources
This bundle contains 11 fully-resourced lessons which will engage and motivate the students whilst covering the following specification points in topics 7 and 8 of the CIE A-level Biology specification: TOPIC 7 The structure of xylem vessel elements, phloem sieve tube elements and companion cells The relationship between the structure and function of xylem vessel elements, phloem sieve tube elements and companion cells Explain how hydrogen bonding of water molecules is involved with the movement in the xylem by cohesion-tension in transpiration pull and adhesion to cell walls The pathways and mechanisms by which water and mineral ions are transported from the soil to the xylem and from roots to leaves Assimilates move between sources and sinks between phloem sieve tubes The mechanism by which sucrose is loaded into the phloem The mass flow of phloem sap down a hydrostatic pressure gradient TOPIC 8 The double, closed circulatory system of a mammal The relationship between the structure and function of arteries, veins and capillaries The role of haemoglobin in carrying oxygen and carbon dioxide The significance of the oxygen dissociation curve of adult haemoglobin at different carbon dioxide concentrations The external and internal structure of the heart The cardiac cycle The role of the SAN, AVN and Purkyne tissue in the initiation and conduction of the heart action The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions with mark schemes, discussion points and quiz competitions that will check on current understanding as well as making links to previously covered topics.