A comprehensive lesson which teaches students the basics of what is meant by voltage and resistance. Students will be given the opportunity to practice the E = QV and V = IR equations as well as learn how to used a voltmeter in a circuit successfully.
By the end of the lesson learners should be able to:
State what’s meant by voltage and resistance.
Describe how temperature affects resistance.
Explain why a high voltage is dangerous.
A checkpoint style plenary is used to assess understanding.
A comprehensive lesson which teaches students about factors that influence the size of a star, the journey through the life of an average sized star and a high mass star and how the colours of stars indicate their energy being released.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Understand the process of stellar evolution
By the end of the lesson learners should be able to:
Success criteria:
I identify the forces at play in a star.
I can describe stellar evolution
I can compare different coloured stars.
Powerpoint contains 18 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A revision poster that includes material needed for section 7 of the edexcel iGCSE combined science double award physics. Section 7 - Radioactivity
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 8 of the edexcel iGCSE combined science double award physics. Section 8 - Astrophysics
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 6 of the edexcel iGCSE combined science double award physics. Section 6 Electromagnetism
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 5 of the edexcel iGCSE combined science double award physics. Section 5 Solids liquids and gases
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 2 of the edexcel iGCSE combined science double award physics. Section 2 - electricity
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A Powerpoint resource that is ready to use out of the box.
Contains KS3 and KS4 content, each of which is signposted per activity.
Learning objective: Justify why containers become pressurised and explain its uses with water rockets.
By the end of the lesson learners should be able to:
Success criteria:
-State what is meant by pressure.
-Describe how gas particles interact with the wall of the container.
-Explain why each of the following increases pressure:
Increasing temperature,
Increasing the amount of gas particles,
Decreasing volume of the container.
This resource also contains a practical lesson, risk assessment, results (+ class results) and evaluation. Videos included of how to launch a water rocket.
Contains 24 slides in total.
A comprehensive lesson which teaches students about Ohm’s law and how IV graphs are sketched for fixed resistors, diodes, thermistors, LDRs and filament bulbs. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To investigate the relationship between current and voltage in different circuit components.
By the end of the lesson learners should be able to:
Success criteria:
I can describe the IV graph trends for filament bulbs, diodes, fixed resistors, thermistors and LDRs
I can apply Ohm’s law to identify and then justify why IV graphs might be different.
I can apply my knowledge to answer past paper questions.
Powerpoint contains 30 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about internal resistance and how this can be measured by measuring the gradient from a current-voltage graph. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To evaluate the effect of internal resistance in a circuit.
By the end of the lesson learners should be able to:
Success criteria:
I can describe what is meant by internal resistance
I can calculate internal resistance
I can obtain results for internal resistance from voltage and current readings.
Powerpoint contains 9 slides and past paper pack of questions.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about factors that influence resistance within a wire in terms of area and length as well as superconductivity. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To justify the components of the resistivity equation and apply it.
By the end of the lesson learners should be able to:
Success criteria:
I can describe resistivity.
I can derive the units of resistivity by using the equation.
I can explain why superconductivity arises.
Powerpoint contains 8 slides and a pack of past paper questions
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about power and how the equations for power can be derived using other equations furthermore it also applies this to Kirchhoff’s law of conservation of current. This lesson was designed to fit the needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To calculate power dissipation by using various equations.
By the end of the lesson learners should be able to:
Success criteria:
SC1: I can describe how to calculate power without using the standard P=IV calculation.
SC2: I can justify what is meant by power.
SC3: I can Link Kirchhoff’s conservation of charge to power dissipation in branches.
Powerpoint contains 7 slides.
Contains a series of questions that are supposed to target the entire electricity unit with included success criteria to ensure students give the necessary detail.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about errors, uncertainties and how these can be represented as error bars. This lesson was designed to fit needs of the AQA a-level physics course
Tasks are differentiated to suit the needs of each learner.
Learning objective: Understand and apply the concepts of measurement uncertainties.
By the end of the lesson learners should be able to:
Success criteria:
1: Identify random and systematic errors.
2: Calculate different types of uncertainties.
3: Represent uncertainties on graphs.
Powerpoint contains 29 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A collection of resources including lessons and past paper questions to suit the needs of unit 5-electricity for the AQA a level physics specification.
Defnyddais google slides are gyfer addysgu’r wers hon. Ddylai bod o’n gweithio yn yr un modd drwy Microsoft PowerPoint ond efallai fydd angen ailosod rhai agweddau.
Erbyn diwedd y wers ddylech fod yn gallu:
Adnabod beth sydd yn achosi’r Haf a’r Gaeaf
Disgrifio sut mae’r Haul yn ymbelydru golau.
Egluro’r cysylltiad rhwng gogwyddo’r Ddaear â’r Tymhorau.
A comprehensive lesson which teaches students how to resolve vector diagrams via: pythagoras, trigonometry and scale drawings. Lesson is tailored towards the AQA A-level physics specification - Mechanics
Tasks are differentiated to suit the needs of each learner.
Learning objective: Learning objective: Apply trigonometry and Pythagoras to resolve vectors
By the end of the lesson learners should be able to:
Success criteria:
SC1: Compare scalars and vectors.
SC2: Use pythagoras and trigonometry in order to solve net vectors including inclined planes.
SC3: Use scale diagrams to resolve net vectors when coplanar forces are in equilibrium.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions.
Powerpoint contains 14 slides and 14 past paper questions.