Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
SELECTIVE REABSORPTION (OCR A-level Biology A)
GJHeducationGJHeducation

SELECTIVE REABSORPTION (OCR A-level Biology A)

(0)
This lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of selective reabsorption. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the OCR-A level Biology A course and ties in nicely with the other lessons from 5.1.2 (c and d) on the structure and function of the kidney
AQA A-level Biology Topic 6: Organisms respond to changes in their internal and external environments
GJHeducationGJHeducation

AQA A-level Biology Topic 6: Organisms respond to changes in their internal and external environments

17 Resources
This bundle contains 17 fully-resourced and detailed lessons that have been designed to cover the content of topic 6 of the AQA A-level Biology specification which concerns the responses of organisms to stimuli. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and prior knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The role of sensory receptors as outlined by the Pacinian corpuscle The human retina as a sensory receptor The differences in rods and cones that enable different sensitivity to light, colour and visual acuity The roles of the SAN, AVN, Bundle of His and Purkyne fibres in the conduction system of the heart The control of heart rate The structure of a myelinated motor neurone The factors that affect the speed of conduction of an impulse The generation and transmission of nerve impulses The transmission at a cholinergic synapse and a neuromuscular junction Summation The contraction of skeletal muscles The structure and properties of slow and fast skeletal muscle fibres The principles of homeostasis including negative feedback systems The control of blood glucose concentration by the controlled release of insulin and glucagon The causes and control of diabetes type I and II The gross structure of the kidney The detailed structure of the nephron The production of glomerular filtrate The reabsorption of glucose and water in the PCT The role of the hypothalamus, posterior pituitary and ADH in osmoregulation This is one of the 8 topics which have to be covered over the length of the 2 year course and therefore it is expected that the teaching time for this bundle will be in excess of 2 months If you want to see the quality of the lessons before purchasing then the lessons on saltatory conduction, the contraction of skeletal muscles and ultrafiltration are free resources to download
The sliding filament model of muscular contraction (CIE International A-level Biology)
GJHeducationGJHeducation

The sliding filament model of muscular contraction (CIE International A-level Biology)

(0)
This is a fully-resourced lesson that covers the content of specification point 15.1 (k) of the CIE International A-level Biology specification which states that students should be able to explain the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The start of the lesson is designed to encourage the students to consider how a sarcomere can narrow but the lengths of the myofilaments can remain the same. In doing so, they will be introduced to the idea of the sliding filament model and the main task of the lesson involves the formation of a bullet point description of this model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic, particularly the lesson which covers the ultrastructure of striated muscle
Selective reabsorption (CIE International A-level Biology)
GJHeducationGJHeducation

Selective reabsorption (CIE International A-level Biology)

(0)
This lesson has been written to cover the 2nd part of specification point 14.1 (f) of the CIE International A-level Biology specification which states that students should be able to describe how the process of selective reabsorption is involved in the formation of urine. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the CIE International A level Biology course and ties in closely with the other lessons on the kidney
Control of heart rate (Edexcel A-level Biology)
GJHeducationGJHeducation

Control of heart rate (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how heart rate is controlled by the cardiovascular control centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the first part of point 7.9 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also ties in well with previously covered topics and provides a good introduction to control systems which are covered later in topic 7 and 8. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Oxidative phosphorylation (Edexcel A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel A-level Biology)

(1)
This detailed, concise lesson describes and explains how the electron transport chain and chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.
Glycolysis (AQA A-level Biology)
GJHeducationGJHeducation

Glycolysis (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the details of glycolysis as the first stage of aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover the second part of point 5.2 of the AQA A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the production and subsequent oxidation of triose phosphate. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on anaerobic respiration and the different stages of aerobic respiration (the Link reaction, Krebs cycle and oxidative phosphorylation)
Topic 12.2: Respiration (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 12.2: Respiration (CIE International A-level Biology)

6 Resources
Each of the 6 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 12.2 (Respiration) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include: The stages of aerobic respiration and their location in eukaryotic cells Glycolysis as the first stage of aerobic and anaerobic respiration Pyruvate is converted to acetyl CoA in the Link reaction The series of reactions that form the Krebs cycle The process and details of oxidative phosphorylation The relationship between structure and function in the mitochondrion Anaerobic respiration in mammalian tissue and yeast cells The oxygen debt The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the Krebs cycle lesson which are free
Stabilising, disruptive and directional selection (CIE International A-level Biology)
GJHeducationGJHeducation

Stabilising, disruptive and directional selection (CIE International A-level Biology)

(0)
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover point 17.2 (b) of the CIE International A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 18 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
Cardiac cycle (OCR A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (OCR A-level Biology)

(0)
This detailed and fully-resourced lesson describes and explains the pressure changes in the heart and arteries and the role of the valves movements in the cardiac cycle. The PowerPoint and accompanying resources have been designed to cover point 3.1.2 (f) of the OCR A-level Biology A specification and also covers the use of the equation stroke volume x heart rate to calculate cardiac output The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the next part of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. Moving forwards, the students are introduced to the stroke volume and meet normative values for this and for resting heart rate. This will lead into the calculation for cardiac output and a series of questions are used to test their ability to apply this equation as well as to calculate the percentage change which is a commonly assessed mathematical skill. This lesson has been written to tie in with the other uploaded lessons on the topics detailed in module 3.1.2 (Transport in animals)
Active loading & translocation (CIE International A-level Biology)
GJHeducationGJHeducation

Active loading & translocation (CIE International A-level Biology)

(1)
This lesson describes the active loading of sucrose at the source and movement by mass flow to the sink down the hydrostatic pressure gradient. Both the detailed PowerPoint and accompanying resources have been designed to cover points 7.2 (g, h & i) as detailed in the CIE International A-level Biology specification. The lesson begins by challenging the students to recognise the key term translocation when it is partially revealed and then the rest of the lesson focuses on getting them to understand how this process involves the mass flow of assimilates down the hydrostatic pressure gradient from the source to the sink. It has been written to tie in with 7.1 (d) where the structure of the phloem tissue was initially introduced and the students are continually challenged on their prior knowledge. A step-by-step guide is used to describe how sucrose is loaded into the phloem at the source by the companion cells. Time is taken to discuss key details such as the proton pumping to create the proton gradient and the subsequent movement back into the cells by facilitated diffusion using co-transporter proteins. Students will learn that the hydrostatic pressure at the source is high, due to the presence of the water and sucrose as cell sap, and that this difference when compared to the lower pressure at the sink leads to the movement along the phloem. A number of quick quiz rounds are included in the lesson to maintain engagement and to introduce key terms and the lesson concludes with a game of SOURCE or SINK as students have to identify whether a plant structure is one or the other (or both)
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
Variation
GJHeducationGJHeducation

Variation

(2)
An engaging lesson presentation (41 slides) and accompanying worksheet that looks at the different causes of variation and the different types of variation. The lesson begins by challenging the students to pick out a set of siblings from a series of pictures and then getting them to explain scientifically why they made the decision that they did. Moving forwards, students will recognise that one cause of variation is genes. Students are shown a pair of identical twins and asked to explain why they look different despite their identical genes so that they can understand that the environment also affects variation. Students will also meet discontinuous and continuous variation and will understand how this data should be represented. There are progress checks throughout the lesson to allow the students to assess their understanding. This lesson has been designed for KS3 and GCSE students.
Involuntary muscle
GJHeducationGJHeducation

Involuntary muscle

(1)
An engaging lesson presentation (36 slides) that looks at the three types of muscle that are found in the body and then focusses on the structure and features of the involuntary muscles, cardiac and smooth. The lesson begins by challenging the students to recall the names of the different types and then gets them to recognise that cardiac and smooth are able to contract without conscious thought. Moving forwards, time is taken to look at the details of these muscles and key terminology such as intercalated discs and gap junctions are introduced so that students can understand how they perform their different functions. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been designed for A-level Biology lessons.
Edexcel GCSE Biology Topic 7 REVISION
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 7 REVISION

(1)
An engaging lesson presentation (81 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 7 (Animal coordination and homeostasis) of the EDEXCEL GCSE Biology specification The topics that are tested within the lesson include: The endocrine system Thyroxine The menstrual cycle Hormonal and barrier methods of contraception Homeostasis Thermoregulation Osmoregulation Control of blood glucose concentration DIabetes Students will be engaged through the numerous activities including quiz rounds like “Have they got the right BALANCE?" and the “B7 ABBREVIATIONS” whilst crucially being able to recognise those areas which need further attention
Edexcel GCSE Science Topic B9 REVISION
GJHeducationGJHeducation

Edexcel GCSE Science Topic B9 REVISION

(1)
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 9 (Ecosystems and material cycles) of the EDEXCEL GCSE Combined Science specification The topics that are tested within the lesson include: Levels of organisation Communities Interdependence in a community Determining the number of organisms in a given area Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs The physical and chemical defences of the human body The use of antibiotics Developing new medicines Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
IVF
GJHeducationGJHeducation

IVF

(1)
This is a fully-resourced lesson which looks at how IVF is used a treatment for infertility and considers the arguments for and against this process. The lesson includes an engaging, informative and discussion provoking lesson presentation and a pair of differentiated worksheets which challenge the mathematical skills of the students when looking at the % chance of multiple births from IVF. The lesson begins by getting the students to recognise the phrase “test tube baby” and then to link this to IVF. Extra pieces of interesting information are given throughout the lesson, such as the introduction of Louise Brown at this point. A step by step guide is used to go through the key steps in the process. Questions are continually posed to the students which get them to think and attempt to verbalise their answers such as when they are questioned whether men are needed for this process. There is a focus on key terminology throughout, such as haploid and zygote and genetic screening. Students will learn that multiple births are much more common in IVF births than from natural conception and then they will be asked to manipulate data in a mathematical task with some figures from a maternity ward. As these questions are quite difficult, this worksheet has been differentiated so that all students can access the learning. Although this has been written for GCSE students, it is suitable for use with older students.
The Menstrual cycle
GJHeducationGJHeducation

The Menstrual cycle

(0)
This is an engaging and discussion filled lesson which looks at the menstrual cycle and specifically focuses on the interaction of the four hormones in the cycle. This lesson has been designed for GCSE students (ages 14 - 16 in the UK) but is suitable for older students who want a recap on this topic before going into more depth. In order to understand the cycle, it is critical that students know the roles that each of the hormones perform and also can describe how one hormone affects another. The main task of the lesson goes through the steps in the cycle, but challenges the students to use their prior knowledge of the endocrine system to add in the name of the correct hormone. At appropriate points of the lesson, time is taken to relate this topic to others in Biology, such as the use of oestrogen in the contraceptive pill and also hCG as the hormone which is detected by pregnancy tests. Students will know key landmarks in the 28 day cycle and be able to relate this back to the hormones. There are progress checks throughout the lesson but the final part of the lesson involves three understanding checks where students are challenged to apply their knowledge.
Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)

13 Resources
This bundle of 15 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: The nervous system The eye Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Plant hormones Homeostasis Controlling body temperature Controlling blood glucose Diabetes Inside the kidney All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.