Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Covalent DOT AND CROSS DIAGRAMS
GJHeducationGJHeducation

Covalent DOT AND CROSS DIAGRAMS

(0)
A concise lesson presentation (21 slides) which uses a range of methods to allow students to discover how to draw dot and cross diagrams for covalent structures. The lesson begins by challenging the students to recall their knowledge of electronic structure to show the outer shell of two specified atoms. They will then see how it is possible for both of these atoms to get full outer shells by sharing as happens in this type of bonding. A few more examples are used to consolidate this understanding before quick competition is used to check the understanding so far. Moving forwards, a step by step guide shows students how to draw dot and cross diagrams using the same techniques as was utilised with the hulas. This lesson has been written for GCSE students but could be used with higher ability KS3 students.
CRACKING hydrocarbons
GJHeducationGJHeducation

CRACKING hydrocarbons

(0)
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check. The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding. This lesson has been designed for GCSE students.
Development of the ATOM
GJHeducationGJHeducation

Development of the ATOM

(0)
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Equations of motion
GJHeducationGJHeducation

Equations of motion

(0)
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working. This lesson has been designed for GCSE students
Inheritance of dominant and recessive alleles
GJHeducationGJHeducation

Inheritance of dominant and recessive alleles

(0)
A detailed lesson presentation and associated question worksheet which uses a step by step guide and numerous worked examples to show students how to draw genetic crosses to calculate offspring percentages. Before students are able to draw genetic diagrams, they need to understand and be able to use genetic terminology so this is the focus for the start of the lesson. Time is taken to go over the meaning of dominant and recessive alleles, genotypes and phenotypes. Moving forwards, students will be challenged to link genotypes to phenotypes for both dominant and recessive disorders and common misconceptions such as carriers in recessive disorders are explained. Finally, a 5 step guide is used to walk students through drawing genetic diagrams. Students are then given a chance to apply their new-found knowledge to questions about the inheritance of cystic fibrosis and polydactyly. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding. This lesson has been designed for GCSE students but is perfectly suitable for A-level students who are studying the topic of monogenic inheritance
Organ transplants
GJHeducationGJHeducation

Organ transplants

(0)
An engaging and informative lesson presentation (40 slides) that looks at the different steps that have to be taken when trying to identify potential donors for organ transplants. Links are made throughout the lesson to related topics such as the human defence systems and blood groups. The lesson begins by challenging the students to use their knowledge of the body’s defences to explain why closely matching tissues is critical when choosing a donor. Moving forwards, students will see how the four blood groups in the ABO system need to receive certain bloods and can only be given to certain others. There is a brief discussion of the HLA antigens and why this needs to be matched. The remainder of the lesson focuses on immuno-suppressant drugs and the advantages and disadvantages to individuals of taking these drugs. Progress checks have been written into the lesson at regular intervals to allow the students to constantly assess their understanding and any misconceptions to be addressed. This lesson has been written for GCSE students
Plant hormones
GJHeducationGJHeducation

Plant hormones

(0)
A fully-resourced lesson which looks at how auxins are involved in the response to the stimuli and gravity. The lesson includes an engaging lesson presentation (29 slides) and associated worksheets which have been differentiated. The lesson begins by challenging students to consider the different stimuli that a plant will respond to. There is focus throughout the lesson on the use of key terminology and students will start immediately by meeting the different types of tropisms. A quick competition is used to introduce the students to auxins and the key details of these chemicals are discussed. They will see how they are produced in the tips of shoots and roots and cause cell elongation in the shoots. A summary task is used to get the students to explain how a plant grow towards a light source. The next task challenges the students to apply their knowledge as a range of experimental data is shown to them and they have to predict how the plant would respond and explain - this task has been differentiated two ways so those students who need extra assistance can access the learning. The final part of the lesson looks at gravitropism and all of the learning is brought together to explain how the shoots grow away and the roots towards. This lesson has been written for GCSE students.
Transpiration (GCSE)
GJHeducationGJHeducation

Transpiration (GCSE)

(0)
An engaging lesson presentation (34), accompanied by a summary worksheet, which together explore the factors which change the rate of transpiration and focuses on the explanation behind each factor. The lesson begins by introducing the term, transpiration, and linking this to the structure of a leaf to ensure that students know that water is lost as water vapour out of the stomata. Students are provided with an analogy of plants being like clothes on a washing line to challenge them to come up with some of the factors involved. Time is taken to look specifically at humidity as this is a factor which is commonly misunderstood. Moving forwards, students are challenged to draw sketch graphs to predict whether increasing each of these factors will increase the rate of transpiration or decrease it. A series of questions to lead to answers is used to show the students how to explain the effect of increasing the light intensity. The remainder of the lesson looks at a potometer and how it can be used to calculate the rate. The mathematical skills of the students are challenged during a range of tasks and then linked back to the Science so they can recognise which features of plants will help to reduce water loss. Progress checks are written into this lesson at regular intervals to allow students to assess their understanding and a number of quick competitions act to maintain engagement. This lesson has been written for GCSE students but is suitable for A-level students who are studying the plants topic
Free body diagrams and resultant forces
GJHeducationGJHeducation

Free body diagrams and resultant forces

(0)
An informative lesson which guides students through the commonly misunderstood topic of drawing free body diagrams and using them to calculate resultant forces. The lesson begins by ensuring that students understand that force is a vector quantity and therefore arrows in diagrams can be used to show the magnitude and direction. Drawing free body diagrams is poorly understood and therefore time is taken to go through the three key steps in drawing these diagrams. Each of these steps is demonstrated in a number of examples, so students are able to visualise how to construct the diagrams before they are given the opportunity to apply their new-found knowledge. The rest of the lesson focuses on calculating resultant forces when the forces act in the same plane and also when they are at angles to each other. Again, worked examples are shown before students are challenged to apply. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students
Gravitational potential energy
GJHeducationGJHeducation

Gravitational potential energy

(0)
A fully-resourced lesson which includes a concise lesson presentation (16 slides) and accompanying worksheet that guides students through the use of the gravitational potential energy equation to calculate energy, mass and height. The lesson begins by challenging students to work out the factors involved in calculating gravitational potential energy having been given a scenario with some balls on shelves. The students will discover that mass and height affect the energy size and that a third factor, gravity constant, is involved. The rest of the lesson focuses on using the equation to calculate energy, mass and height. In terms of the latter, students have to carry out an engaging task to work out the height that three flags have to be hoisted to during a medal ceremony. This lesson has been written for GCSE students.
KINETIC ENERGY
GJHeducationGJHeducation

KINETIC ENERGY

(0)
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE students
Work done and POWER
GJHeducationGJHeducation

Work done and POWER

(0)
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power. This lesson has been designed for GCSE students.
Thermistors and LDRs
GJHeducationGJHeducation

Thermistors and LDRs

(0)
This lesson has been designed to help students to explain the relationship between current and resistance in thermistors and LDRs. This can be a topic which students do not engage with or understand well, so this lesson has tried to add engagement with useful tips to deepen their knowledge. A number of quick competitions are used to introduce key terms such as semiconductor and then the key points explained. Students are given an exemplary answer for the thermistor so they can see how their work should be set out when trying to explain the graph produced by a LDR. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students.
Background radiation
GJHeducationGJHeducation

Background radiation

(0)
An engaging lesson which uses a range of tasks to ensure that students understand the meaning of the term, background radiation, and are able to name a number of sources of this type of radiation. The start of the lesson focuses on the definition of background radiation and the idea that is all around us is revisited again a number of times during the lesson. Through a range of activities and discussion points, students will meet the different sources as well as the % that they each contribute. It seemed appropriate to challenge some mathematical and scientific skills at this point so students will represent the data in a pie chart form. Related topics are discussed such as Chernobyl. Progress checks are written into the lesson at regular intervals so the students can constantly assess their understanding. This lesson is designed for GCSE students.
Series and Parallel circuits
GJHeducationGJHeducation

Series and Parallel circuits

(0)
A fully-resourced lesson that explores how resistance, current and potential difference differ between series and parallel circuits. This knowledge needs to be sound in order for students to be able to carry out circuit calculations. The lesson includes a practical and task-based lesson presentation (24 slides) and an accompanying worksheet. The lesson begins by challenging the students to recognise the key difference between the two circuits, in that in a parallel circuits, the electrons can follow more than one route. Moving forwards, each physical factor is investigated in each type of circuits and students carry out tasks or calculations to back up any theory given. Helpful analogies and hints are provided to guide the students through this topic which is sometimes poorly understood. Students will be challenged to use the V = IR equation on a number of occasions so that they are comfortable to find out any of these three factors. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and any misconceptions can be addressed. This has been written for GCSE students, but could be potentially used with higher ability KS3 students.
Specific latent heat
GJHeducationGJHeducation

Specific latent heat

(0)
A fast-paced lesson presentation (20 slides) which focuses on the understanding of the scientific term, specific latent heat, and guides students through use of the related equation in energy calculations. This lesson has been written for GCSE students and along with specific heat capacity, these are topics which students regularly say that they do not understand so the aim here has been to embed the key details. The task at the start of the lesson gets students to plot the changing state line for pure water. They have to annotate the line to show the changes in state and then most crucially recognise that when these changes in state occur, there is no change in temperature. Moving forwards, students will meet the additional terms of fusion and vaporisation and then be introduced to the equation. They are reminded that this isn’t an equation that they have to recall, but are expected to apply it and therefore the next few slides focus on the potential difficulties that could be encountered. These include the conversion between units and a mathematical skills check is included at this point so that their ability to move between grams and kilograms and Joules and kiloJoules is tested. Progress checks like this are written into the lesson at regular intervals so the students can constantly assess their understanding.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.
Pressure and the position of the equilibrium
GJHeducationGJHeducation

Pressure and the position of the equilibrium

(0)
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased. This lesson has been written for GCSE students.
Topic C5: Monitoring and controlling chemical reactions (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C5: Monitoring and controlling chemical reactions (OCR Gateway A GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic C5 (Monitoring and controlling chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Rates of reaction The Collision theory Temperature and the rate of reaction Concentration and the rate of reaction Particle size and the rate of reaction Catalysts and the rate of reaction Reversible reactions Temperature and pressure and equilibrium Choosing reaction conditions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.