Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic P2: Forces (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P2: Forces (OCR Gateway A GCSE Combined Science)

14 Resources
This bundle of 14 lessons covers the majority of the content in Topic P2 (Forces) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Speed and velocity Acceleration Distance and velocity-time graphs Contact and non-contact forces Free body diagrams Resultant forces Terminal velocity Momentum Conservation of momentum Mass, weight and gravitational field strength Gravitational potential and kinetic energy Work done and power Hooke’s Law All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover over 6 week’s worth of lessons.
Topic P3: Conservation of energy (Edexcel GCSE Combined Science & GCSE Physics)
GJHeducationGJHeducation

Topic P3: Conservation of energy (Edexcel GCSE Combined Science & GCSE Physics)

5 Resources
This bundle of 5 lessons covers the majority of the content in Topic P3 (Conservation of energy) of the Edexcel GCSE Combined Science & GCSE Physics specifications. The topics covered within these lessons include: Calculating change in gravitational potential energy Kinetic energy Conservation of energy Reducing unwanted energy transfer Efficiency Increasing efficiency Energy sources All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P9: Forces and their effects (Edexcel GCSE Physics)
GJHeducationGJHeducation

Topic P9: Forces and their effects (Edexcel GCSE Physics)

3 Resources
This bundle of 3 lessons covers a lot of the content in Topic P9 (Forces and their effects) of the Edexcel GCSE Physics specification. The topics covered within these lessons include: Objects interacting due to forces Vector and scalar quantities Resolution of forces Free body diagrams Turning forces The principle of moments All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)

4 Resources
This bundle of 4 fully-resourced lessons have been planned to include a wide variety of tasks which will engage and motivate the students whilst covering the following points as detailed in topic 4.2 of the Edexcel A-level Biology B specification: The structure of the cell surface membrane, with reference to the fluid mosaic model Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis The relationship between the properties of molecules and the method by which they are transported Large molecules can be transported in and out of cells by endocytosis and exocytosis The process of active transport and the role of ATP The phosphorylation of ADP and the hydrolysis of ATP If you would like to sample the quality of the lessons in this bundle, then download the ATP & active transport lesson as this has been shared for free
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Topic 3: Enzymes (CIE A-level Biology)
GJHeducationGJHeducation

Topic 3: Enzymes (CIE A-level Biology)

6 Resources
This lesson bundle contains 6 fully-resourced lessons which have been designed to engage and motivate the students whilst covering the detailed content of topic 3 (Enzymes) in the CIE A-level Biology specification. These globular proteins catalyse biological reactions throughout living organisms so a deep understanding of this topic is important for all of the other 18 topics in this course. The wide range of activities that are included within the lesson PowerPoints and accompanying resources will cover the following specification points: Enzymes are globular proteins that catalyse reactions The mode of action of enzymes The lock and key hypothesis and the induced-fit model The effect of temperature on the rate of an enzyme-catalysed reaction The effect of pH on the rate of an enzyme-catalysed reaction The effect of enzyme and substrate concentration on the rate of an enzyme-catalysed reaction The effect of inhibitor concentration on the rate of an enzyme-catalysed reaction The effect of competitive and non-competitive inhibitors on enzyme activity Immobilising an enzyme in alginate
Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)
GJHeducationGJHeducation

Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)

18 Resources
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow. Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include: differentiated exam-style questions with clear mark schemes directed discussion points quiz competitions to introduce key terms and values current understanding and prior knowledge checks Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
Endotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Endotherms (Edexcel A-level Biology B)

(0)
This detailed lesson describes how an endotherm regulates its temperature through behaviour and also physiologically. The engaging PowerPoint and accompanying resources have been designed to cover specification point 9.9 (vii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of the autonomic nervous system, thermoreceptors, hypothalamus and skin. A wide range of activities have been written into this lesson so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals.
ECGs and abnormal heart rhythms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

ECGs and abnormal heart rhythms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of abnormal heart rhythms. The engaging PowerPoint and accompanying resources have been designed to cover point 7.12 (iii) of the Edexcel International A-level Biology specification but also can be used as a revision lesson as the students are challenged on their prior knowledge of the cardiac cycle and heart structure as covered in topic 1. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
Preparing slides & staining (OCR A-level Biology)
GJHeducationGJHeducation

Preparing slides & staining (OCR A-level Biology)

(1)
This lesson describes how to prepare and examine microscope slides and the use of staining in light microscopy. The PowerPoint and accompanying resources have been designed to cover points 2.1.1 (b & c) of the OCR A-level Biology A specification and describe how the eyepiece graticule and stage micrometer are used to measure the size of an object with a light microscope and the use of eosin and methylene blue. The main task of this lesson involves a step by step guide which walks students through the methodology and the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and this will need them to convert between units. Moving forwards, the students are challenged to apply this method to a series of exam-style questions and the mark scheme is displayed on the PowerPoint so that they can assess their understanding. In the last lesson, they were briefly introduced to the idea that some specimens need to be stained as light passes completely through transparent samples and the remainder of the lesson builds on this knowledge. Students will learn that cell populations, structures within cells and biological tissues can be distinguished using stains and a series of questions will challenge them to make links to biological molecules, organelles and infections. Links are also made to the upcoming topic of epithelial tissue in the respiratory system. This lesson has been specifically written to tie in with the previous lesson on light and electron microscopes and 2 rounds of the sub-module quiz competition are found in this lesson.
Proteins REVISION (OCR A-level Biology)
GJHeducationGJHeducation

Proteins REVISION (OCR A-level Biology)

(0)
This fully-resourced revision lesson uses a range of activities to challenge the students on their knowledge of proteins from module 2.1.2. The engaging PowerPoint and accompanying resources have been designed to test the intricate details of specification points 2.1.2 (k), (l), (m), (n), (o) & (q) The range of activities include exam-style questions with displayed mark schemes, understanding checks and quick quiz competitions that will engage and motivate the students whilst they assess their understanding of this topic. The following concepts are tested during this lesson: The general structure of an amino acid The formation of dipeptides and polypeptides through condensation reactions The primary, secondary, tertiary and quaternary structure of a protein Biological examples of proteins and their specific actions (e.g. antibodies, enzymes, peptide hormones) The biuret test for proteins Time has been taken in the planning to make links to topics in upcoming modules such as the genetic code (2.1.3) and intracellular enzymes (2.1.4)
Movement of the body (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Movement of the body (Edexcel Int. A-level Biology)

(0)
This lesson describes how an interaction of muscles, tendons, the skeleton and ligaments is needed for movement of the human body. The PowerPoint and accompanying resources have been designed to cover point 7.9 of the Edexcel International A-level Biology specification and also includes descriptions of antagonistic muscle pairs, extensors and flexors. At the start of the lesson, the prep room skeleton is used as the example to show that bones without muscles are bones that are unable to move (unaided). Moving forwards, the students will learn that skeletal muscles are attached to bones by bundles of collagen fibres known as tendons and as they covered the relationship between the structure and function of collagen in topic 2, a task is used that challenges their recall of these details. This will allow them to recognise that the ability of this fibrous protein to withstand tension is important for the transmission of the force from the muscle to pull on the moveable bone. A series of quick quiz competitions introduce the key terms of flexion and antagonistic and then an exam-style question challenges them to recognise the structures involved in extension at the elbow. The remainder of the lesson focuses on the role of ligaments and one final example of extension at the knee joint will demonstrate how the interaction of all of the structures met over the course of the lesson is needed for movement
Temperature control in endotherms (OCR A-level Biology)
GJHeducationGJHeducation

Temperature control in endotherms (OCR A-level Biology)

(0)
This is a highly engaging and detailed lesson which looks at the physiological and behavioural responses involved in temperature control in endotherms and therefore covers specification point 5.1.1 (d) of the OCR A-level Biology A specification. A wide range of activities have been written into the PowerPoint and accompanying worksheets so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals. This lesson has been designed for A-level students studying the OCR A-level Biology A course
Structures involved in MOVEMENT (Edexcel A-level Biology A)
GJHeducationGJHeducation

Structures involved in MOVEMENT (Edexcel A-level Biology A)

(0)
This lesson describes how muscles, tendons, the skeleton and ligaments interact to enable movement. The PowerPoint and accompanying resources have been designed to cover point 7.1 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also includes descriptions of antagonistic muscle pairs, extensors and flexors. At the start of the lesson, the prep room skeleton is used as the example to show that bones without muscles are bones that are unable to move (unaided). Moving forwards, the students will learn that skeletal muscles are attached to bones by bundles of collagen fibres known as tendons and as they covered the relationship between the structure and function of collagen in topic 2, a task is used that challenges their recall of these details. This will allow them to recognise that the ability of this fibrous protein to withstand tension is important for the transmission of the force from the muscle to pull on the moveable bone. A series of quick quiz competitions introduce the key terms of flexion and antagonistic and then an exam-style question challenges them to recognise the structures involved in extension at the elbow. The remainder of the lesson focuses on the role of ligaments and one final example of extension at the knee joint will demonstrate how the interaction of all of the structures met over the course of the lesson is needed for movement
Adrenal glands (OCR A-level Biology A)
GJHeducationGJHeducation

Adrenal glands (OCR A-level Biology A)

(0)
This lesson describes the structure and functions of the adrenal glands, and includes the hormones secreted by the cortex and the medulla. The detailed PowerPoint and accompanying resources have been designed to cover point 5.1.4 (b) of the OCR A-level Biology A specification This lesson has been planned to closely tie in with the previous lesson on endocrine communication, and specifically the modes of action of peptide and steroid hormones. At the start of the lesson, the students have to use the knowledge acquired in this last lesson to reveal the key term cortex and this leads into the description of the structure of the adrenal glands in terms of the outer region and the inner region known as the medulla. The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure and polysaccharides. The final part of the lesson introduces the three zones of the adrenal cortex and the steroid hormones that they produce along with their functions. Once again, a series of exam-style questions are used to challenge their ability to apply their understanding to an unfamiliar situation and to make biological links and the mark schemes are embedded in the PowerPoint.
Edexcel GCSE Combined Science Topic P12 & P13 REVISION
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P12 & P13 REVISION

(0)
This REVISION lesson contains an engaging powerpoint (45 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topics P12 (Magnetism and the motor effect) and P13 (Electromagnetic induction) of the Edexcel GCSE Combined Science specification. Generally, these topics are poorly understood by students but are regularly assessed through questions in the GCSE exams and so time has been taken to design the lesson so that the key points are covered and common misconceptions addressed. The following specification points are covered in this lesson: Recall that unlike magnetic poles attract and like magnetic poles repel Explain the difference between permanent and induced magnets Describe the use of plotting compasses to show the shape and direction of the field of a magnet and the Earth’s magnetic field Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic Explain that magnetic forces are due to interactions between magnetic fields Recall and use Fleming’s left-hand rule to represent the relative directions of the force, the current and the magnetic field for cases where they are mutually perpendicular Use the equation which connects force on a conductor, magnetic flux density, current and length Recall that a transformer can change the size of an alternating voltage Explain why, in the national grid, electrical energy is transferred at high voltages from power stations, and then transferred at lower voltages in each locality for domestic uses as it improves the efficiency by reducing heat loss in transmission lines Explain where and why step-up and step-down transformers are used in the transmission of electricity in the national grid Use the power equation (for transformers with 100% efficiency) This lesson is suitable for use throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
OCR GCSE Combined Science PAPERS 1 - 6 REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Combined Science PAPERS 1 - 6 REVISION LESSONS

6 Resources
This bundle of 6 revision lessons covers the content that can be assessed across the 6 papers that students will be required to take as part of the OCR Gateway A GCSE Combined Science qualification. The 6 papers and respective topics are: Paper 1 (Biology) J250/01 Cell-level systems Scaling up Organism level systems Paper 2 (Biology) J250/02 Community level systems Interaction between systems Global challenges Paper 3 (Chemistry) J250/03 Particles Elements, compounds and mixtures Chemical reactions Paper 4 (Chemistry) J250/04 Predicting and identifying reactions and products Monitoring and controlling chemical reactions Global challenges Paper 5 (Physics) J250/05 Matter Forces Electricity and magnetism Paper 6 (Physics) J250/06 Waves and radioactivity Energy Global challenges All of the lessons have been written to engage and motivate the students whilst they evaluate their understanding of the different papers
The Calvin cycle (CIE A-level Biology)
GJHeducationGJHeducation

The Calvin cycle (CIE A-level Biology)

(0)
This fully-resourced lesson describes the three main stages of the Calvin cycle as fixation, reduction and regeneration. The detailed PowerPoint and accompanying resources have been designed to cover the content of point 13.1 (g) of the CIE A-level Biology specification and detailed planning ensures that continual links are made to the previous lesson on the light-dependent stage so that students understand how the products of that stage, ATP and reduced NADP, are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the Calvin cycle. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with discussion points where the class are given time to discuss the answer to selected questions, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed.
Structure, properties & action of enzymes (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure, properties & action of enzymes (Edexcel A-level Biology B)

(0)
This lesson describes the structure of enzymes and explains how their specificity enables them to act as catalysts intracellularly and extracellularly. The engaging PowerPoint and accompanying resources have been designed to cover points 1.5 (i), (ii), (iii) & (vii) of the Edexcel A-level Biology B specification and describes Fischer’s lock and key hypothesis and Koshland’s induced-fit model to deepen student understanding of the mechanism of enzyme action The lesson has been specifically planned to tie in with topic 1.3 where protein structure and globular proteins were covered. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase, DNA helicase and DNA polymerase and students are challenged on their recall of DNA replication with an exam question before they are challenged on their knowledge of carbohydrates, lipids and proteins from topics 1.1 - 1.3 as they have to recognise some extracellular digestive enzymes from descriptions of their substrates.
Ectotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Ectotherms (Edexcel A-level Biology B)

(0)
This lesson introduces the differences between ectotherms and endotherms and then describes the behavioural responses of an ecotherm. The PowerPoint and accompanying resource have been designed to cover specification point 9.9 (vi) of the Edexcel A-level Biology B specification which states that students should understand how ectotherms rely on the external environment for their temperature control. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the terminal exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy when covered in the following lesson.