Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Reflection
GJHeducationGJHeducation

Reflection

(0)
This is a fully-resourced lesson that looks at the reflection of light waves and uses a series of practical based tasks to discover the rules of reflection as well as introducing the critical angle. In addition, students will encounter how total internal reflection can be used in medicine in endoscopy and will be challenged to carry out a task where they act as a doctor to explain to a patient how the procedure works. The lesson contains a variety of tasks, progress checks to check on understanding and a few quick competitions, which introduce key terms. For example, the cover image shows one of these competitions called REFLECT THE WORD where students have to work out the key term - the normal in this case. The understanding of key terminology such as the normal is important so that students can construct ray diagrams in this lesson and in associated topics such as refraction. This lesson has been designed for GCSE aged students but could be used with younger students who are looking to go into this topic in greater depth than perhaps would normally be encountered at their level
Everyday motion
GJHeducationGJHeducation

Everyday motion

(1)
This is a fully-resourced lesson that guides students through the range of calculations involved in calculating speeds in everyday situations. This lesson includes an informative lesson presentation (27 slides) and a question worksheet which has been differentiated two ways. The lesson begins by showing the students a speed camera and challenging them to recall the equation that would be used to calculate the speed as well as asking them to explain where the distance and the time values would come from. This lesson has a high mathematical element to it, to run in line with the questions that were seen in the latest exams this summer. Students will be expected to convert between units and rearrange formula. In this example, students are challenged to convert between m/s and mph in order to determine which of three drivers will receive a speeding ticket for exceeding the limit. This task has been differentiated so that students who find the conversions difficult are given some assistance so they can still access the learning. Moving forwards, students will see how a sensor on a tyre of a bicycle can also be used to calculate the speed by working out the circumference of the tyre to determine the distance. The final part of the lesson gets students to convert between m/s and mph and the other way to find out some typical speeds of everyday motion such as walking, running or a train moving. This lesson has been written for GCSE aged students but could be used with younger students of high ability who need an extra challenge in the calculating speed topic.
Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Everyday motion Explain methods of measuring human reaction times and recall typical results Explain the factors which affect stopping distance The main energy sources available on Earth The differences between renewable and non-renewable energy sources The use of transformers to increase and decrease potential difference The National grid and mains electricity The differences in function of the wires in a three core cable All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
The BLOOD VESSELS (OCR A-level Biology)
GJHeducationGJHeducation

The BLOOD VESSELS (OCR A-level Biology)

(0)
This fully-resourced lesson explores how the structure of arteries, arterioles, capillaries, venules and veins relate to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 © of the OCR A-level Biology A specification. This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, it is quite likely that some students will not be aware of the transition vessels that are the arterioles. This section begins with an understanding of the need for these vessels because the structural and functional differences between arteries and capillaries is too significant. The action of the smooth muscle in the walls of these vessels is discussed and students will be challenged to describe a number of situations that would require blood to be redistributed. The middle part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. It is estimated that it will take at least 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.1(Physics on the move) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: Everyday motion Reaction time and thinking distance Stopping distances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C3.3: Types of chemical reactions (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C3.3: Types of chemical reactions (OCR Gateway A GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers the majority of the content in the sub-topic C3.3 (Types of chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Explain reduction and oxidation in terms of the loss or gain of oxygen and the loss or gain of electrons Recall that acids form hydrogen ions when they dissolve in water and solutions of alkalis contain hydroxide ions Recognise and describe neutralisation reactions Write balanced equations for the reactions of carbonates and metals with acids Recall that relative acidity and alkalinity are measured by pH and describe techniques and apparatus to take these measures All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B3: Infection and response (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic B3: Infection and response (AQA Trilogy GCSE Combined Science)

5 Resources
This bundle of 5 lessons covers the majority of the content in Topic B3 (Infection and response) of the AQA Trilogy GCSE Combined Science specification. The topics and specification points covered within these lessons include: Communicable (infectious diseases) Viral diseases Bacterial diseases Fungal diseases Protist diseases Human defence systems Vaccination Antibiotics Discovery and development of drugs All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C2f: Acids, alkalis and titrations (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C2f: Acids, alkalis and titrations (Edexcel iGCSE Chemistry)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic C2f (Acids, alkalis and titrations) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Describe the use of indicators to distinguish between acidic and alkaline solutions Understand how to use the pH scale Know that alkalis can neutralise acids Describe how to carry out an acid-alkali titration All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Edexcel GCSE Chemistry Topic C9 (Separate Chemistry 2) REVISION
GJHeducationGJHeducation

Edexcel GCSE Chemistry Topic C9 (Separate Chemistry 2) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the sub-topics found within Topic C9 (Separate chemistry 2) of the Edexcel GCSE Chemistry specification. The sub-topics and specification points that are tested within the lesson include: Describe flame tests to identify cations in solids or solutions Describe tests and identify anions in solids or solutions Recall the formulae of the molecules of alkanes and alkenes Explain why the alkanes and alkenes are described as the saturated and unsaturated hydrocarbons respectively Explain how bromine water is used to distinguish between alkanes and alkenes Describe how the complete combustion of alkanes and alkenes leads to the production of carbon dioxide and water Recall that a polymer is made up of repeating units Recall the formulae of the carboxylic acids and alcohols Know the functional groups of these homologous series Compare the sizes of nanoparticles with atoms and molecules Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Topic C2h: Chemical tests (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C2h: Chemical tests (Edexcel iGCSE Chemistry)

3 Resources
This bundle of 3 lessons covers the majority of the content in Topic C2h (Chemical tests) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Describe tests for the colourless gases Describe how to carry out a flame test Know the colours produced in the flame tests for the different cations Describe further tests for the cations Describe tests for the anions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Edexcel iGCSE Chemistry Topic C4 (Organic Chemistry) REVISION
GJHeducationGJHeducation

Edexcel iGCSE Chemistry Topic C4 (Organic Chemistry) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic C4 (Organic chemistry) of the Edexcel iGCSE Chemistry specification which has its’ first assessment in 2019. The topics that are tested within the lesson include: Crude oil Alkanes Alkenes Alcohols Carboxylic acids Polymers Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual assessment.
Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P14 (Particle model) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Explain the different states of matter in terms of movement and arrangement of particles Recall and use the equation to calculate density Explain the differences in density between the different states of matter Describe how mass is conserved during changes of state and understand how these physical changes differ from chemical changes Define the terms specific heat capacity and specific latent hear and explain the differences between them Use the equations to calculate change in thermal energy and thermal energy for a change in state Knows way to reduce unwanted energy transfer Describe the term absolute zero, in terms of the lack of movement of particles Convert between the kelvin and Celsius scales Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
OCR A-level Biology A Module 4.2.2 REVISION (Classification and evolution)
GJHeducationGJHeducation

OCR A-level Biology A Module 4.2.2 REVISION (Classification and evolution)

(0)
This revision resource has been designed with the simple aim of motivating the students whilst they assess their understanding of the content found in module 4.2.2 (Classification and evolution) of the OCR A-level Biology A specification. This module is often brushed over by students which leads to misconceptions and therefore time has been taken to explain the important concepts so that key points are recalled and retained. The resource includes a detailed and engaging Powerpoint (85 slides) and associated worksheets, some of which are differentiated to allow students of differing abilities to access the work. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The biological classification of a species Classification hierarchy The three-domain and five-kingdom classification The features of the five kingdoms Phylogenetic trees Anatomical, physiological and behavioural adaptations Calculating the standard deviation Continuous and discontinuous variation In addition to these topics, some topics from other modules such as cell division and prokaryotic cells are tested in order to challenge the students on their ability to make links between the modules. The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement.
The causes and control of diabetes type I and II (AQA A-level Biology)
GJHeducationGJHeducation

The causes and control of diabetes type I and II (AQA A-level Biology)

(0)
This engaging lesson covers the final details of specification point 6.4.2 of the AQA A-level Biology specification which states that students should be able to describe the causes and control of diabetes mellitus type I and II. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. This lesson has been designed for students taking the AQA A-level Biology course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added on topic 6
OSMOREGULATION (AQA A-level Biology)
GJHeducationGJHeducation

OSMOREGULATION (AQA A-level Biology)

(1)
This is a highly-detailed and fully-resourced lesson which covers the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the roles of the hypothalamus, posterior pituitary and ADH in osmoregulation. Students learnt about the principles of homeostasis and negative feedback in an earlier lesson, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with the other uploaded lessons which cover this specification point as well as the whole of topic 6.
The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)
GJHeducationGJHeducation

The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)

(0)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
SYNAPSES (OCR A-level Biology A)
GJHeducationGJHeducation

SYNAPSES (OCR A-level Biology A)

(0)
This fully-resourced lesson covers the content of the first part of specification point 5.1.3 (d) of the OCR A-level Biology A specification that states that students should be able to demonstrate and apply an understanding of the structures and roles of synapses in nervous transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the OCR A-level Biology A course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from module 5.1.3 (neuronal communication) which are sensory receptors, neurones, nerve impulses and summation.
The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)
GJHeducationGJHeducation

The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)

(0)
This engaging and fully-resourced lesson covers the content of specification points 5.1.4 (e and f) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the differences between diabetes mellitus type I and II and the potential treatments of this disease. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. The final part of the lesson looks at the potential treatments which include the genetic modification of bacteria. This topic is covered in greater detail in module 6.1.3 so this section of the lesson focuses on the enzymes involved as well as the plasmid DNA from a bacterial cell. This lesson has been designed for students studying the OCR A-level Biology A course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added for module 5.1.4
Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)
GJHeducationGJHeducation

Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)

(0)
This fully-resourced lesson covers the content of the first part of specification point 6.2.2 of the AQA A-level Biology specification that states that students should be able to describe the detailed structure of a cholinergic synapse and a neuromuscular junction and be able to compare the transmission across both of these structures. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters and drugs are considered so students are prepared to describe the differing effects on the synapse. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The next part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. The final part of the lesson focuses on the NMJ and challenges the students to use the knowledge gained from earlier in the lesson to develop their understanding of these junctions. Time is taken to look at the structure of the sarcolemma to enable students to understand how the binding of the acetylcholine leads to the wave of depolarisation passing to the transverse tubules. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the AQA A-level Biology course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from topic 6
Control of blood glucose concentration (AQA A-level Biology)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA A-level Biology)

(0)
This fully-resourced lesson is highly detailed and in combination with the uploaded lesson on the causes of diabetes type I and II, it covers all of specification point 6.4.2 of the AQA A-level Biology specification which states that students should be able to describe the homeostatic control of blood glucose concentration using negative feedback mechanisms that release insulin or glucagon. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the AQA A-level Biology course and ties in with the already mentioned lesson on diabetes but also with the other uploaded lessons on topic 6 such as nerve impulses and kidney function