Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The sliding filament model of muscular contraction (CIE International A-level Biology)
GJHeducationGJHeducation

The sliding filament model of muscular contraction (CIE International A-level Biology)

(0)
This is a fully-resourced lesson that covers the content of specification point 15.1 (k) of the CIE International A-level Biology specification which states that students should be able to explain the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The start of the lesson is designed to encourage the students to consider how a sarcomere can narrow but the lengths of the myofilaments can remain the same. In doing so, they will be introduced to the idea of the sliding filament model and the main task of the lesson involves the formation of a bullet point description of this model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic, particularly the lesson which covers the ultrastructure of striated muscle
Selective reabsorption (CIE International A-level Biology)
GJHeducationGJHeducation

Selective reabsorption (CIE International A-level Biology)

(0)
This lesson has been written to cover the 2nd part of specification point 14.1 (f) of the CIE International A-level Biology specification which states that students should be able to describe how the process of selective reabsorption is involved in the formation of urine. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the CIE International A level Biology course and ties in closely with the other lessons on the kidney
Sex-linkage (AQA A-level Biology)
GJHeducationGJHeducation

Sex-linkage (AQA A-level Biology)

(3)
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict the results of crosses involving sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
Active & co-transport (AQA A-level Biology)
GJHeducationGJHeducation

Active & co-transport (AQA A-level Biology)

(1)
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the the overall reaction of photosynthesis that takes place in the grana and stroma of the chloroplast. The detailed PowerPoint and accompanying resources have been designed to cover points 5.1 & 5.5 in unit 4 of the Edexcel International A-level Biology specification and also describes the relationship between the structure and role of the chloroplast Students will have some knowledge of photosynthesis from iGCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.3 & 5.4 (i) and (ii).
Adaptations of organisms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Adaptations of organisms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson provides examples of anatomical, behavioural and physiological adaptations of organisms to their environment. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.19 in unit 2 of the Edexcel International A-level Biology specification and also describes the concept of a niche and makes continual links to related topics such as natural selection A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Immunity & vaccinations (Edexcel A-level Biology B)
GJHeducationGJHeducation

Immunity & vaccinations (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how vaccinations are used to control disease and how immunity can be natural, artifical, active and passive. The engaging PowerPoint and accompanying resources have been designed to cover points 6.7 (v) & (vi) of the Edexcel A-level Biology B specification and there is also a description and discussion on the development of herd immunity. The previous lesson finished with a series of exam questions where students observed differences between the primary and secondary immune responses so the start of this lesson uses an imaginary game of TOP TRUMPS to challenge them on the depth of their understanding. This will act to remind them that a larger concentration of antibodies is produced in a quicker time in the secondary response. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is re-encountered.
Slow and fast skeletal muscle fibres (AQA A-level Biology)
GJHeducationGJHeducation

Slow and fast skeletal muscle fibres (AQA A-level Biology)

(0)
This fully-resourced lesson describes the structure and general properties of slow and fast skeletal muscle fibres. The detailed PowerPoint and accompanying resources are the second in a series of 2 lessons that cover the content detailed in point 6.3 of the AQA A-level Biology specification and due to the obvious links, this lesson also challenges the students on their knowledge of respiration, cell structures and biological molecules like glycogen and haemoglobin The following structure and properties are covered over the course of this lesson: Reliance on the aerobic or anaerobic pathways to generate ATP Resistance to fatigue mitochondrial density capillary density myoglobin content (and colour) fibre diameter phosphocreatine content glycogen content A wide variety of tasks are used to cover this content and include knowledge recall and application of knowledge exam-style questions with fully-displayed mark schemes as well as quick quiz competitions to maintain motivation and engagement. This lesson has been specifically planned to tie in with the previous lesson in topic 6.3, titled “Contraction of skeletal muscles”, and this lesson has been uploaded for free
Secondary immune response (Edexcel A-level Biology B)
GJHeducationGJHeducation

Secondary immune response (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the role of memory cells in the secondary immune response. The PowerPoint and accompanying resources have been designed to cover specification point 6.7 (iv) of the Edexcel A-level Biology B specification but also contains a detailed description of the structure and function of antibodies and therefore covers this part of 6.7 (ii) As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Ecological terms & distribution of organisms (Edexcel A-level Biology A)
GJHeducationGJHeducation

Ecological terms & distribution of organisms (Edexcel A-level Biology A)

(0)
This lesson ensures that students know the meaning of key ecological terms and explains how biotic and abiotic factors control the distribution of organisms. The engaging PowerPoint and accompanying resources have been designed to cover points 5.1, 5.2 and 5.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
Cardiac output (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Cardiac output (Edexcel Int. A-level Biology)

(0)
This lesson describes how to calculate the cardiac output as the product of stroke volume and the heart rate. The PowerPoint and accompanying resource have been designed to cover point 7.13 (i) of the Edexcel International A-level Biology specification. The lesson begins by challenging the students to recognise that the left ventricle has the most muscular wall of all of the heart chambers. This allows the stroke volume to be introduced as the volume of blood ejected from the left ventricle each heart beat and then a quiz competition is used to introduce normative values for the stroke volume and the heart rate. Moving forwards, students will learn that the cardiac output is the product of the stroke volume and the heart rate. A series of exam-style questions will challenge the students to use this formula and to manipulate it and to work out the percentage change. The final part of the lesson looks at the adaptation of the heart to aerobic training in the form of cardiac hypertrophy and then the students are challenged to work out how this would affect the stroke volume, the cardiac output and the resting heart rate.
Topic 5.2: The human nervous system (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5.2: The human nervous system (AQA GCSE Biology)

4 Resources
These 4 lessons cover the content of topic 5.2 of the AQA GCSE Biology specification - The human nervous system. Each of the lesson PowerPoints and their accompanying resources have been designed to contain a wide range of tasks which will engage and motivate the students whilst covering the GCSE content. There are also lots of understanding checks so students can check on their current understanding as well as prior knowledge checks where they are challenged to make links to previously-covered topics.
Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Pathogens and the body's barriers to infection (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the major routes that pathogens take when entering the body and the body’s barriers to this infection. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 6.7 (i) & (ii) of the Edexcel International A-level Biology specification and includes descriptions of the following barriers: skin the blood clotting process mucous membranes stomach acid vaginal acid and flora skin and gut flora wax in the ear canal There are clear links to topics 1, 2 and 3 in each of these barriers, so these are considered and discussed during each of the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include protein structure, key terminology and the epithelium that lines the different parts of the airways. All of the exam-style questions have mark schemes that are embedded into the PowerPoint and a number of the tasks have been differentiated to allow students of differing abilities to access the work.
Mitosis and its significance (OCR A-level Biology A)
GJHeducationGJHeducation

Mitosis and its significance (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the main stages of mitosis and explains the significance of this type of nuclear division in life cycles. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (c & e) of the OCR A-level Biology A specification and make direct links to the previous lesson which covered the cell cycle Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)
GJHeducationGJHeducation

Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)

(0)
This lesson explains that biodiversity is considered at three levels and describes how the Simpson’s Index of Diversity is used to calculate the biodiversity within a habitat. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 18.1 (a, b & f) of the CIE A-level Biology specification and also covers the meaning of ecosystems and niche as well as some other important ecological terms that are related such as abiotic factors and population. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs throughout the lesson and has been included to engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, ecosystems, biodiversity, endemic, heterozygote, distribution and natural selection and each of these terms is put into context once introduced. A series of exam-style questions to challenge the students to explain how the distribution of fish is affected by abiotic factors in an ecosystem. Once biodiversity is revealed through the quiz competition, the students will learn that they need to consider biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness and the Simpson’s index of diversity. The heterozygosity index is also introduced as a means to consider genetic variation. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise This is a detailed lesson with a lot of tasks (some of which are differentiated), so it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the content
Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)
GJHeducationGJHeducation

Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)

(0)
This lesson describes the characteristic features of the three domains and explains why viruses are not included in this classification. The PowerPoint and accompanying resources have been primarily designed to cover points 18.2 (b) & 18.2 (d) of the CIE A-level Biology specification but also contains tasks that challenge the students on their knowledge of taxonomic hierarchy from this topic and the features of virus from topic 1. The lesson begins with an introduction of the microbiologist Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in the last lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson explains why viruses are not included in this classification and outlines how they are classified, according to the ICTV, through the type of nucleic acid they contain and whether this is single-stranded or double-stranded
Maths in A-level Biology (CIE A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (CIE A-level Biology)

7 Resources
Without doubt, the CIE A-level Biology specification contains a lot of maths calculations and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 7 lessons that are included in this bundle: Using the eyepiece graticule and stage micrometer to measure cells and be familiar with units Calculating actual sizes of specimens from drawings, photomicrographs and electron micrographs Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Use the t-test to compare the variation of two populations Using the Hardy Weinberg principle to calculate allele, genotype and phenotype frequencies in populations Use Spearman’s rank correlation to analyse relationships between the distribution and abundance of species and abiotic or biotic factors Using Simpson’s index of diversity to calculate the biodiversity of a habitat All of the lessons contain step by step guides that walk the students through the application of the formulae and there are lots of worked examples and exam-style questions for the students to use to assess understanding
Maths in A-level Biology (OCR A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (OCR A-level Biology)

8 Resources
The mathematical element of the OCR A-level Biology A specification is substantial and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 9 lessons that are included in this bundle: Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Using the Hardy Weinberg principle to calculate the frequency of an allele or a genotype in a population Calculating the standard deviation to measure the spread of data Using the Student’s t-test to compare the means of two sets of data Calculating the temperature coefficient Calculating the proportion of polymorphic gene loci Using and interpreting Simpson’s index of diversity to calculate the biodiversity of a habitat Using the Spearman’s rank correlation coefficient to consider the relationship of the data The use and manipulation of the magnification formula A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations
Ventilation and gas exchange in bony fish (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in bony fish (OCR A-level Biology)

(2)
This lesson describes the roles of the buccal cavity, operculum, gill lamellae and countercurrent flow in ventilation and gas exchange in bony fish. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 that have been designed to cover the details of point 3.1.1 (f) of the OCR A-level Biology A specification. The second lesson in this series covers the mechanisms of ventilation and gas exchange in insects. The lesson has been specifically planned to prepare students for the content of module 3.1.2 (Transport in animals) and therefore begins with an introduction and a brief description of the single circulatory system of a fish as this has an impact on the delivery of deoxygenated blood to the lamellae. A quick quiz competition is used to introduce the operculum and then the flow of blood along the gill arch and into the primary lamellae and then into the capillaries in the secondary lamellae is described. The next task challenges the students to use their knowledge of module 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a feature that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The remainder of the lesson focuses on the coordinated movements of the buccal-opercular pump to ensure that the water continues to flow over the gills. Current understanding and prior knowledge checks are included throughout the lesson and students can assess their progress against the mark schemes which are embedded into the PowerPoint
Topic 3.2: Gas exchange (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3.2: Gas exchange (AQA A-level Biology)

4 Resources
This bundle contains 4 lessons which cover the following content that’s set out in topic 3.2 (Gas exchange) of the AQA A-level Biology specification: Adaptations of gas exchange surfaces as shown by the gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing All of the lessons are detailed and have been intricately planned to contain a wide range of tasks that will challenge the students on their understanding of the current topic as well as their recall of knowledge from previously-covered topics. In this way, the students are encouraged to make links between biological processes in different topics so they are prepared for assessment questions which do just that. Lessons covering topics 3.1, 3.3 and 3.4 are also uploaded