A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is a concise REVISION lesson that contains an engaging powerpoint (43 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Space Physics) of the AQA 9-1 GCSE Physics specification.
The following sub-topics in the specification are covered in this lesson:
Our Solar System
The life cycle of a star
Natural satellites
Red-shift
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
This clear and detailed lesson describes the process of oxidative phosphorylation, including the roles of the electron carriers, oxygen and the mitochondrial cristae and explains the role of chemiosmosis. The PowerPoint has been designed to cover points 5.2.2 (g) and (h) of the OCR A-level Biology A specification and includes details of the electron transport chain, proton gradients and ATP synthase.
The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules.
This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration
This lesson has been designed to cover the content of the 1st part of specification point 6.1.2 of the AQA A-level Biology specification which states that students should know the basic structure of a Pacinian corpuscle and be able to use its function as a representation of sensory receptors. By the end of the lesson students will understand that sensory receptors respond to specific stimuli and how a generator potential is established.
The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin. The involvement of sodium and potassium ions is introduced so discussions on how the membrane potential changes from resting potential in the establishment of a generator potential are encouraged.
This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 6
This lesson describes the sequence of events that occur during the phagocytosis of pathogens and the subsequent destruction by lysozymes. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the second part of point 2.4 of the AQA A-level Biology specification but includes an introduction to antigen-presentation so that the students are prepared for upcoming lessons on the cellular and humoral responses.
At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The lesson concludes with a brief introduction to lymphocytes so that initial links between phagocytosis and the specific immune responses are made.
This revision lesson contains an assessment of 20 multiple-choice questions and a PowerPoint with the answers and related key points from the specification. The 20 questions have been written to cover the content of topic 4 of the AQA A-level biology specification, providing the students with an opportunity to assess their understanding and highlight those areas which need further attention.
All 7 sub-topics of topic 4 are covered by at least one question and there are several questions which challenge mathematical skills, which aligns with the high mathematical content of the final assessments.
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 8 (Transport in mammals) of the CIE International A-level Biology specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention.
The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus:
The significance of the oxygen dissociation curves at different concentrations of carbon dioxide (The Bohr effect)
The role of haemoglobin in carrying oxygen
The role of haemoglobin in carrying carbon dioxide
Draw the structures of red blood cells, neutrophils, monocytes and lymphocytes
The relationship between the structure and function of a capillary
The internal structure of the heart and its associated blood vessels
Explain how heart action is initiated and controlled
The pressure changes of the cardiac cycle
The relationship between the structure and function of arteries and veins
The double, closed circulatory system of a mammal
Quiz rounds such as “Does this FLOW correctly” and “YOU DO THE MATH” are used to test the students on the finer details of their knowledge of the blood vessels and numerical facts
This detailed lesson describes the different types of plant responses, including responses to abiotic stress and herbivory and the range of tropisms. The PowerPoint and accompanying resources have been primarily designed to cover the content set out in point (a) of module 5.1.5 of the OCR A-level biology A specification, but as the role of auxins in phototropism and gravitropism are also described, some aspects of point (b) are covered. This lesson also acts as an excellent revision tool as the students’ knowledge of previously-covered topics including classification, defences against pathogens, and biological molecules are constantly challenged.
The lesson begins with one of these challenges, where the students must recognise 7 key terms from their descriptions and use the respective 1st letters to reveal the key term, stimuli. This leads into the recognition of the need for plants to respond to these changes in the environment to increase their chances of survival. Students will have briefly encountered auxins at GCSE and this first part of the lesson builds on this knowledge, introducing IAA, and ensuring that they know the fundamentals, including how these hormones move from the tips to the growing regions. A series of application questions will challenge them to describe how plants display positive phototropism and roots display positive gravitropism.
Moving forwards, the students will learn that nastic responses are independent of the direction of the external stimuli and the Venus flytrap is used as an example. Again, a series of exam-style questions will challenge the students on their knowledge of topics related to this carnivorous plant.
The remainder of the lesson considers responses to abiotic stress, such as water stress and the herbivory response, including the production of alkaloids and pheromones.
The answers to all understanding checks are embedded into the PowerPoint to allow the students to assess their progress.
This lesson describes how genetic diversity within, or between species, can be investigated by comparison of characteristics or biological molecules. The PowerPoint and accompanying worksheets are primarily designed to cover the content of point 4.7 of the AQA A-level Biology specification but as this is the last lesson in the topic, it has also been planned to contain a range of questions, tasks and quiz rounds that will challenge the students on their knowledge and understanding of topic 4.
Over the course of the lesson, the students will discover that comparisons of measurable or observable characteristics, DNA and mRNA sequences and the primary structure of common proteins can all be used to investigate diversity. Links are continually made to prior learning, such as the existence of convergent evolution as evidence of the need to compare biological molecules as opposed to the simple comparison of phenotypes. The issues associated with a limited genetic diversity are discussed and the interesting biological example of the congenital dysfunctions consistently found in the Sumatran tigers in captivity in Australia and New Zealand is used to demonstrate the problems of a small gene pool. Moving forwards, the study of the 16S ribosomal RNA gene by Carl Woese is introduced and students will learn that this led to the adoption of the three-domain system in 1990. The final part of the lesson describes how the primary structure of proteins like cytochrome c that is involved in respiration and is therefore found in most living organisms can be compared and challenges the students to demonstrate their understanding of protein synthesis when considering the differences between humans and rhesus monkeys.
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work.
The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer.
The following content is covered in this lesson:
The functions of the cerebral cortex, medulla and cerebellum
Identification of the regions of the brain on an external and internal diagram
The early use of stroke victims to identify functions
The key details of the MRI scanning technique
The difficulties of diagnosing and treating brain disorders and disease
As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
This bundle contains 20 PowerPoint lessons, and all are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification:
Structure and function of the organelles in eukaryotic cells
The specialised cells in complex, multicellular organisms
The structure of prokaryotic cells
The structure of viruses which are acellular and non-living
Measuring objects under an optical microscope
Use of the magnification formula
The principles of cell fractionation and ultracentrifugation
The behaviour of chromosomes during the stages of the cell cycle
Calculating the mitotic index
Uncontrolled cell division leads to the formation of tumours and cancer
Binary fission
The basic structure of cell membranes
The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol
Simple diffusion
Facilitated diffusion
Osmosis, explained in terms of water potential
The role of carrier proteins and the hydrolysis of ATP in active transport
Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum
Recognition of different cells by the immune system
The identification of pathogens from antigens
The phagocytosis of pathogens
The cellular response involving T lymphocytes
The humoral response involving the production of antibodies by plasma cells
The structure of an antibody
The roles of plasma cells and memory cells in the primary and secondary immune response
The use of vaccines to protect populations
The differences between active and passive immunity
The structure of the human immunodeficiency virus and its replication in helper T cells
Why antibiotics are ineffective against viruses
The use of antibodies in the ELISA test
If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free.
I have also uploaded lessons on optical microscopes and HIV and AIDS (for free) but neither are included in this bundle as the limit of 20 resources has been reached!
This bundle of detailed lesson PowerPoints and accompanying resources have been designed to cover the content of topic 5.1 (Photosynthesis) in the AQA A-level Biology specification. This cellular reaction can prove difficult for the students to understand, so extra planning has gone into these 4 lessons to ensure that the key details of the reactions are embedded and understanding is constantly checked through a variety of activities. All of the exam-style questions which are used in these current understanding and prior knowledge checks have mark schemes that are included in the PowerPoint to allow the students to assess their work.
If you would like to sample the quality of these lessons, download the chloroplast structure lesson as this has been uploaded for free.
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification.
A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller:
community
ecosystem
abiotic factor
photosynthesis
respiratory substrate
biomass
calorimetry
The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3.
All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained.
The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”.
This lesson has been designed for GCSE students.
This fully-resourced lesson with differentiated resources has been written to prepare students for the range of mathematical-based questions they may face on the two Edexcel GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Calculating the relative atomic mass using isotope mass and abundance
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the Edexcel GCSE Combined Science course by taking out the sections which are not applicable.
A fully-resourced lesson which includes a lesson presentation (24 slides) and a worksheet which is differentiated so that students can judge their understanding of the topic of writing half equations for electrolysis and access the work accordingly. The lesson uses worked examples and helpful hints to show the students how to write half equations at both the cathode and anode. Time is taken to remind students about the rules at the electrodes when the electrolyte is in solution so that they can work out the products before writing the equations.
This lesson has been designed for GCSE students (14 - 16 years old in the UK) but could be used with older students.
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways.
The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning.
This lesson has been written for GCSE students
This lesson bundle contains 8 detailed lesson PowerPoints and their accompanying resources and all of them have been planned at length to engage and motivate the students whilst covering the biological content of module 4.1.1 of the OCR A-level Biology A specification. The wide range of tasks which are contained with each of these lessons cover the following specification points:
The different types of pathogen that can cause communicable diseases in plants and animals
The means of transmission of animal and plant communicable pathogens
The primary non-specific defences against pathogens in animals
The structure and mode of action of phagocytes
The structure, different roles and modes of action of B and T lymphocytes in the specific immune response
The primary and secondary immune responses
The structure and general functions of antibodies
An outline of the action of opsonins, agglutinins and anti-toxins
The difference between active and passive immunity, and between natural and artificial immunity
Autoimmune diseases
The principles of vaccination and the role of vaccination programmes in the prevention of epidemics
If you would like to sample the quality of the lessons in this bundle, then download the “Transmission of animal and plant pathogens” and “immunity & vaccinations” lessons as these have been uploaded for free
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step.
The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons.
A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include:
Respiration produces ATP
Glycolysis as the first stage of aerobic and anaerobic respiration
The phosphorylation of glucose and the production and oxidation of triose phosphate
The production of lactate or ethanol in anaerobic conditions
The Link reaction
The oxidation-reduction reactions of the Krebs cycle
The synthesis of ATP by oxidative phosphorylation
The chemiosmotic theory
Lipids and proteins as respiratory substrates
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics
If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free