Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)

9 Resources
All of the 9 lessons that are included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification: The structure and ultrastructure of plant cells The function of the organelles in plant cells The structure and function of starch and cellulose The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem Understand that classification is a means of organising the variety of life based on relationships between organisms New taxonomic groupings The meaning of the terms biodiversity and endemism Know how biodiversity can be measured within a habitat and within a species Comparing biodiversity between habitats using the index of diversity The adaptations of organisms to their environment Use of the Hardy-Weinberg equation Changes in allele frequency are the result of mutation and natural selection Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
OCR A-level Biology Module 6.3.1 REVISION (Ecosystems)
GJHeducationGJHeducation

OCR A-level Biology Module 6.3.1 REVISION (Ecosystems)

(1)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 6.3.1 (Ecosystems) of the OCR A-level Biology A specification. The topics tested within this lesson include: Ecosystems Transfer of biomass Recycling within ecosystems Succession Studying ecosystems Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Edexcel GCSE Chemistry Topic 7 REVISION (Rates of reaction and energy changes)
GJHeducationGJHeducation

Edexcel GCSE Chemistry Topic 7 REVISION (Rates of reaction and energy changes)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Rates of reaction and energy changes) of the Edexcel GCSE Chemistry specification. The specification points that are covered in this revision lesson include: Suggest practical methods for determining the rate of a given reaction Explain how reactions occur when particles collide and that rates of reaction are increased when the frequency and/or energy of collisions is increased Explain the effects on rates of reaction of changes in temperature, concentration, surface area to volume ratio of a solid and pressure (on reactions involving gases) in terms of frequency and/or energy of collisions between particles Describe a catalyst as a substance that speeds up the rate of a reaction without altering the products of the reaction, being itself unchanged chemically and in mass at the end of the reaction Explain how the addition of a catalyst increases the rate of a reaction in terms of activation energy Describe an exothermic change or reaction as one in which heat energy is given out Describe an endothermic change or reaction as one in which heat energy is taken in Recall that the breaking of bonds is endothermic and the making of bonds is exothermic Recall that the overall heat energy change for a reaction is: a exothermic if more heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants b endothermic if less heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants Calculate the energy change in a reaction given the energies of bonds (in kJ mol–1) Explain the term activation energy Draw and label reaction profiles for endothermic and exothermic reactions, identifying activation energy The students will thoroughly enjoy the range of activities, which includes a quiz competition called “E NUMBERS” where they have to recognise the differences between endothermic and exothermic reactions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
AQA GCSE Combined Science Topic B3 REVISION (Infection and response)
GJHeducationGJHeducation

AQA GCSE Combined Science Topic B3 REVISION (Infection and response)

(1)
This revision lesson contains an engaging powerpoint (45 slides) and associated worksheets that are incorporated into the lesson to challenge and consolidate the learning. The lesson has been designed to contain a wide range of activities so that students remain motivated and engaged whilst they assess their understanding of the content found in Biology topic 3 (Infection and response) of the AQA GCSE Combined Science specification (Trilogy 9-1) The exam questions, differentiated tasks and quiz competitions found within the lesson challenge the following specification topics: Communicable (infectious) diseases Viral diseases Bacterial diseases Fungal diseases Protist diseases The Human defence system Vaccinations Antibiotics Students will be able to use the lesson to identify the areas of the specification that require further attention and this lesson can be used at the end of the topic, in the lead up to the mocks or in the lead up to the actual GCSE exams.
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Alloys
GJHeducationGJHeducation

Alloys

(0)
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet. The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement. This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
Topic 4: Exchange and transport (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4: Exchange and transport (Edexcel A-level Biology B)

18 Resources
The wide variety of tasks that are written into the 18 lesson PowerPoints and accompanying resources that are included in this lesson bundle will engage and motivate the students whilst covering the detailed content of topic 4 of the Edexcel A-level Biology B specification (Exchange and transport). The following specification points are covered by these lessons: Understand how the surface area to volume ratio affects the transport of molecules in living organisms Understand why organisms need a mass transport system and specialised gas exchange surfaces as they increase in size The structure of the cell surface membrane Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis Understand how the properties of molecules affects how they are transported Large molecules are transported in and out of cells by endocytosis and exocytosis The process of active transport The phosphorylation and hydrolysis of ATP Understand how insects, fish and mammals are adapted for gas exchange The structure of the heart, arteries, veins and capillaries The advantages of the double circulatory system The sequence of events of the cardiac cycle The myogenic stimulation of the heart Interpreting ECG traces The role of platelets and plasma proteins in the sequence of events leading to blood clotting The structure of haemoglobin in relation to its role in the transport of respiratory gases The Bohr effect The dissociation curve of haemoglobin The significance of the oxygen affinity of foetal haemoglobin The similarities and differences between the structure and function of haemoglobin and myoglobin The formation and reabsorption of tissue fluid Know that tissue fluid that is not reabsorbed is returned to the blood via the lymph The structure of the xylem and phloem in relation to their role in transport The movement of water by the apoplastic and symplastic pathways The cohesion-tension model Hours and hours has gone into the intricate planning of all of these lessons and the quality can be sampled by downloading the following lessons which have been uploaded for free: Surface area to volume ratio ATP, active transport, endocytosis and exocytosis Structure of the heart, arteries, veins and capillaries Double circulatory system Apoplastic and symplastic pathways
Module 2.1.6: Cell division, cell diversity and organisation (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.6: Cell division, cell diversity and organisation (OCR A-level Biology A)

4 Resources
This lesson bundle contains 4 detailed lesson PowerPoints, which along with their accompanying resources have been designed to cover the majority of the content in module 2.1.6 of the OCR A-level Biology A specification. The lessons have been planned at length and include exam-style questions that will challenge the students on their current understanding, prior knowledge checks to encourage students to make links to previously covered topics, guided discussion points and quick quiz competitions to introduce memorable terms and values. The following specification points are covered by the resources in this bundle: The cell cycle How the cell cycle is regulated The main stages of mitosis The significance of mitosis in life cycles The significance of meiosis in life cycles The main stages of meiosis How cells of multicellular organisms are specialised for particular functions The organisation of cells into tissues, organs and organ systems Stem cells as a renewing source of undifferentiated cells The production of erythrocytes and neutrophils derived from stem cells in bone marrow If you would like to sample the quality of the lessons in this bundle, then download the cell specialisation and organisation lesson as this has been uploaded for free
AQA GCSE Physics Topic 8 REVISION (Space Physics)
GJHeducationGJHeducation

AQA GCSE Physics Topic 8 REVISION (Space Physics)

(0)
This is a concise REVISION lesson that contains an engaging powerpoint (43 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Space Physics) of the AQA 9-1 GCSE Physics specification. The following sub-topics in the specification are covered in this lesson: Our Solar System The life cycle of a star Natural satellites Red-shift This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
Haemoglobin and the transport of oxygen (AQA A-level Biology)
GJHeducationGJHeducation

Haemoglobin and the transport of oxygen (AQA A-level Biology)

(0)
This engaging lesson looks at the structure of the quaternary protein, haemoglobin, and describes its role with red blood cells in the transport of oxygen. The PowerPoint has been designed to cover the first part of point 3.4.1 of the AQA A-level Biology specification and explains how the cooperative nature of binding results in a loading of each molecule with 4 oxygen molecules and describes how it is unloaded at the respiring cells too. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. Students will learn that a conformational change upon binding of the first oxygen leads to it being easier to bind future oxygens and that this is known as cooperative binding. This lesson has been written to tie in with the other uploaded lesson on the Bohr effect.
Cardiac cycle (AQA A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (AQA A-level Biology)

(0)
This detailed lesson describes and explains the pressure and volume changes and associated valve movements that occur during the cardiac cycle to maintain the unidirectional flow of blood. The PowerPoint and accompanying resource have been designed to cover the 5th part of point 3.4.1 of the AQA A-level Biology specification. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. This lesson has been written to tie in with the other uploaded lessons on the circulatory system as detailed in topic 3.4.1 (Mass transport in animals)
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Adaptations (AQA A-level Biology)
GJHeducationGJHeducation

Adaptations (AQA A-level Biology)

(0)
This fully-resourced lesson describes how natural selection results in species with anatomical, behavioural and physiological adaptations. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 4.4 of the AQA A-level Biology specification and make continual links to the earlier parts of this topic including evolution and genetics. A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Different types of variation (OCR A-level Biology)
GJHeducationGJHeducation

Different types of variation (OCR A-level Biology)

(0)
This fully-resourced lesson describes the differences between continuous and discontinuous variation and intraspecific and interspecific variation. The engaging PowerPoint and accompanying resources have been designed to cover the first part of point 4.2.2 (f) of the OCR A-level Biology A specification but also acts as a revision tool as a number of activities challenge the students on their knowledge of the genetic code and meiosis from modules 2.1.3 and 2.1.6. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation between members of the same species is due to both genetic and environmental factors and that this is known as intraspecific variation. The next part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations and deletions, the degenerate and non-overlapping genetic code, crossing over and independent assortment. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. In the following task, the students have to determine whether a statement or example represents discontinuous or continuous variation. The final part of the lesson describes a few examples where environmental factors affect phenotype, such as chlorosis in plants.
Primary & secondary responses & antibodies (OCR A-level Biology)
GJHeducationGJHeducation

Primary & secondary responses & antibodies (OCR A-level Biology)

(0)
This lesson describes the differences between the primary and secondary responses and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 4.1.1 (g), (h) and (i) as detailed in the OCR A-level Biology A specification and emphasises the importance of memory cells. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Aerobic respiration (Edexcel A-level Biology B)
GJHeducationGJHeducation

Aerobic respiration (Edexcel A-level Biology B)

(0)
This detailed lesson describes each of the 4 stages of aerobic respiration and explains how this cellular reaction yields ATP and generates heat. The engaging PowerPoint and accompanying resource have been designed to cover points 5.1 (i) and (ii) of the Edexcel A-level Biology B specificaiton and acts as a clear introduction for the upcoming lessons where the finer details of glycolysis, the Link reaction and Krebs cycle and oxidative phosphorylation are described The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the the formation of water when oxygen acts as the final electron acceptor.
Chromosome mutations (AQA A-level Biology)
GJHeducationGJHeducation

Chromosome mutations (AQA A-level Biology)

(0)
This fully-resourced lesson explores the contributions of the chromosome mutations that arise during meiosis to genetic variation. The engaging PowerPoint and accompanying worksheets have been designed and written to cover the part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how mutations in the numbers of chromosomes can arise spontaneously and significantly contribute to evolution. Over the course of the lesson, students will encounter a number of chromosome mutations but the main focus is chromosome non-disjunction and they will learn that this can result in Down, Turner’s and Klinefelter’s syndromes. Students are guided through a description of the formation of gametes and zygotes with abnormal numbers of chromosomes before being challenged to describe the formation of a zygote with Turner’s syndrome. The key aspects of meiosis, which are taught in a future lesson, are introduced and related to the lead up to the change in chromosome number. Inversion, translocation, duplication and deletion are also introduced and links are made to other topics such as regulatory sequences and gene expression.
AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)
GJHeducationGJHeducation

AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)

6 Resources
This bundle of 6 revision lessons challenges the students on their knowledge of the content of topics B1 - B7, C1 - C10 and P1 - P7 of the AQA GCSE Combined Science specification which will be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics. The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content. If you would like to see the quality of these lessons, download the paper 2 and 5 revision lessons as these have been shared for free.
Mass transport (AQA A-level Biology)
GJHeducationGJHeducation

Mass transport (AQA A-level Biology)

10 Resources
This fully-resourced bundle includes 10 detailed PowerPoint lessons and their accompanying worksheets which cover the content as set out in topic 3.4 (Mass transport) of the AQA A-level Biology specification. This topic includes sections on mass transport in animals (3.4.1) and mass transport in plants (3.4.2). The lessons have been designed to include a wide range of tasks to maintain motivation whilst ensuring that the understanding of the content is constantly checked and links are made to other topics. The specification points in topic 3.4 which are covered in these lessons are: The haemoglobins The role of haemoglobin in the transport of oxygen The oxyhaemoglobin dissociation curve The Bohr effect The general pattern of blood circulation in a mammal The gross structure of the human heart The valve movements in the cardiac cycle The structure of the blood vessels The formation of tissue fluid The transport of water in the xylem The structure of the phloem tissue Translocation by mass flow If you would like to see the quality of these lessons, download the arteries, tissue fluid and translocation lessons as these have been uploaded for free
Non-specific immune responses (Edexcel A-level Biology A)
GJHeducationGJHeducation

Non-specific immune responses (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the non-specific responses of the body to infection and includes details of phagocytosis, inflammation and interferon release. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the content of point 6.7 of the Pearson Edexcel A-level Biology A specification but topics including antigen-presentation are also introduced to prepare students for upcoming lessons on the immune response (6.8 & 6.9). At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The importance of cell signalling for an effective immune response is discussed and the rest of the lesson focuses on the release of two chemicals - interferons and histamine. During the interferon section, references are made to a previous lesson on HIV structure and action so students can understand how the release of these signalling proteins helps neighbouring cells to heighten their anti-viral defences. A step by step guide is used to describe the release of histamine in the inflammatory response and the final task challenges students to use this support to form a detailed answer regarding the steps in inflammation.