Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Light and electron MICROSCOPES
GJHeducationGJHeducation

Light and electron MICROSCOPES

(0)
A fully-resourced lesson, designed for GCSE students which includes an engaging and informative lesson presentation (49 slides) and an image, actual and magnification question worksheet. This lesson looks at the key features of light and electron microscopes and guides students through calculating size and magnification. The lesson begins by challenging students to pick out two key terms about microscopes, magnification and resolution, from a group of Scientific words. The understanding of these two terms is critical if students will be able to compare the two types of microscopes so time is taken to go through the definitions and give examples. A number of quick quiz competitions have been written into the lesson to aid the engagement on a topic that some students may not initially consider to be that motivating. These competitions allow key terms such as micrometer and the two types of electron microscope to be introduced in an engaging way. As a result, students will know the numbers that explain why electron microscopes are more advanced than their light counterparts. The remainder of the lesson looks at the units of size which are used in calculation questions and a step by step guide is used to show the students to calculate the actual size of an object or the magnification. Progress checks have been written into this lesson at regular intervals so that students are constantly assessing their understanding.
Transcription and Translation - GCSE
GJHeducationGJHeducation

Transcription and Translation - GCSE

(0)
This lesson looks at the two stages of protein synthesis, transcription and translation, and focuses on the key details that students need to understand this potentially difficult topic. The lesson presentation has been deliberately written in a concise way to encourage the students to summarise the two stages and pick out the key points which will enable them to form longer answers when necessary. The lesson begins by introducing the students to RNA, and a quick check is done to see how much they can recall about the other nucleic acid, DNA. Moving forwards, students are challenged to study the structure of DNA and RNA in SPOT THE DIFFERENCE before being challenged to explain why RNA is necessary in this process. Time is taken to look at important sections such as complimentary base pairing and the identification of amino acids from the codon. A number of quick competitions have been written into the lesson to maintain engagement and the progress checks are regular so that students assess their understanding and any misconceptions can be quickly identified and addressed. This lesson has been written for GCSE students but should a teacher want to teach an introduction lesson on protein synthesis before going into more detail at a later date, then this would be suitable.
Endothermic and exothermic reactions
GJHeducationGJHeducation

Endothermic and exothermic reactions

(1)
This is a fully-resourced lesson which includes an engaging and detailed lesson presentation and differentiated worksheets that together guide students through the key details of endothermic and exothermic reactions. This lesson has been designed for GCSE students but could be used with students entering this topic at A-level who are looking for a recap on the key details. This lesson focuses on a few critical areas of these reactions and those which are often poorly understood. For example, considerable time is taken to ensure that students understand how energy is taken in to break bonds in a reaction and given out when bonds are formed. From this basis, they learn to compare the amount of energy taken in with the amount given out and ultimately determine whether it is an endothermic or exothermic reaction. The format of the lesson is that students are guided through the combustion of methane as an exothermic reaction and shown how to draw reaction profiles and calculate energy changes using the bond energies to prove it is that type of reaction. Having worked with the teacher and each other on this reaction, students are then challenged to bring their skills together to describe, explain and represent an endothermic reaction. If students feel that they will need some assistance on this task, the worksheet has been differentiated so they can still access the learning. There are a number of quick competitions written into the lesson to maintain engagement and also progress checks are found at regular intervals so students can constantly assess their understanding. The lesson finishes with a final game called The E factor which tests the students knowledge from across the whole lesson.
Limiting reactants and stoichiometry
GJHeducationGJHeducation

Limiting reactants and stoichiometry

(0)
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work. The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Topic C6.2: Organic Chemistry (OCR Gateway A GCSE Chemistry)
GJHeducationGJHeducation

Topic C6.2: Organic Chemistry (OCR Gateway A GCSE Chemistry)

7 Resources
This bundle of 7 lessons covers the majority of the content in the sub-topic C6.2 (Organic Chemistry) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include: Alkanes Alkenes Alcohols Carboxylic acids Alkanes from crude oil Cracking oil fractions Biological polymers All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Maths in Science
GJHeducationGJHeducation

Maths in Science

4 Resources
This bundle of 4 lesson presentations and associated resources cover a lot of the mathematical skills that can be tested in Science. Since the move to the new GCSE specifications, the mathematical element has increased significantly and these lessons act to guide students through these skills. Students are shown how to convert between units, rearrange to change the subject of the formula and to use significant figures and standard form.
Edexcel iGCSE Chemistry C2 (Inorganic chemistry) REVISION
GJHeducationGJHeducation

Edexcel iGCSE Chemistry C2 (Inorganic chemistry) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick differentiated tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic C2 (Inorganic chemistry) of the Edexcel iGCSE Chemistry specification which has its’ first assessment in 2019. The topics that are tested within the lesson include: Group 1 (alkali metals) Group 7 (halogens) Gases in the atmosphere Reactivity series Extraction and uses of metals Acids, alkalis and titrations Chemical tests Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual assessment. The detail of this lesson means that it could be used over a number of lessons at school so that each topic is covered in sufficient depth.
Edexcel GCSE Biology Paper 2 REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology Paper 2 REVISION LESSONS

5 Resources
This bundle of 5 revision lessons covers the specification content which can be assessed in Paper 2 of the Edexcel GCSE Biology qualification. The topics covered within this bundle are: Topic 1: Key concepts in Biology Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they address any areas which need further attention.
Edexcel GCSE Biology Topic 2 REVISION (Cells and control)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 2 REVISION (Cells and control)

(1)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Cells and control) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Describe mitosis as part of the cell cycle, including the stages interphase, prophase, metaphase, anaphase and telophase and cytokinesis Describe the importance of mitosis in growth, repair and asexual reproduction Describe the division of a cell by mitosis as the production of two daughter cells, each with identical sets of chromosomes in the nucleus to the parent cell, and that this results in the formation of two genetically identical diploid body cells Explain the importance of cell differentiation in the development of specialised cells Discuss the potential benefits and risks associated with the use of stem cells in medicine Describe the structures and functions of the brain including the cerebellum, cerebral hemispheres and medulla oblongata Explain how the difficulties of accessing brain tissue inside the skull can be overcome by using CT scanning and PET scanning to investigate brain function Explain the structure and function of sensory receptors, sensory neurones, relay neurones in the CNS, motor neurones and synapses in the transmission of electrical impulses, including the axon, dendron, myelin sheath and the role of neurotransmitters Explain the structure and function of the eye as a sensory receptor including the role of the cornea, lens and iris Describe defects of the eye including cataracts, longsightedness and short-sightedness Explain how long-sightedness and short-sightedness can be corrected The students will thoroughly enjoy the range of activities, which include quiz competitions such as "Can I have a P please BOB” where they have to recognise the different phases of mitosis from pictures or descriptions. The activities will crucially enable the students to determine which areas of topic 2 will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)
GJHeducationGJHeducation

AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)

(1)
This is a fully-resourced REVISION lesson that uses a combination of exam questions, understanding checks, differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 3.3 (Organisms exchange substances with their environment) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: Surface area to volume ratio Gas exchange Digestion and absorption Mass transport in animals Mass transport in plants Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)
GJHeducationGJHeducation

AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)

(0)
This is a fully-resourced REVISION resource that consists of an engaging PowerPoint (127 slides) and associated worksheets that challenge the students on their knowledge of topic 7 (Genetics, populations, evolution and ecosystems) of the AQA A-level Biology specification. A wide range of activities have been written into this resource to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to cover as much of the content as possible, but the following sub-topics have been given particular attention: Genetic terminology Using genetic diagrams to calculate phenotypic ratios and percentages for the inheritance of a single gene Applying the Hardy-Weinberg principle Sex-linkage Codominance, multiple alleles and interpreting genetic trees Types of variation Ecological terminology Dihybrid inheritance Using the chi-squared test to determine significance Epistasis Succession Sampling to estimate populations and consider distribution The mathematic elements of this topic and specification are challenged throughout the resource and useful hints given to enable the students to pick up vital marks from questions on this topic. Due to the size of this resource, teachers may choose to use it over the course of a number of lessons and it is suitable for use at the end of topic 7, in the lead up to the mocks or in the lead up to the actual A-level exams.
Ecosystems and biomass (AQA A-level Biology)
GJHeducationGJHeducation

Ecosystems and biomass (AQA A-level Biology)

(1)
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Topic 7: Respiration, Muscles and the Internal Environment (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 7: Respiration, Muscles and the Internal Environment (Edexcel Int. A-level Biology)

20 Resources
This bundle contains 20 lesson PowerPoints which are highly detailed to ensure that the topic 7 content is covered at the depth required for A-level Biology. The lessons have been intricately planned to contain a wide variety of tasks that will engage and motivate the students whilst covering the current material and to make links to other lessons in this topic as well as to the previous 6 topics. The tasks, which include exam-style questions with mark schemes, guided discussion time and quick quiz competitions, cover the following points in the respiration, muscles and the internal environment topic of the Edexcel International A-level Biology specification: The overall reaction of aerobic respiration The many steps of respiration are controlled and catalysed by a specific intracellular enzyme The roles of glycolysis in aerobic and anaerobic respiration The role of the link reaction and the Krebs cycle in the complete oxidation of glucose The synthesis of ATP by oxidative phosphorylation Know the way in which muscles, tendons, the skeleton and ligaments interact in movement The structure of skeletal muscle fibre The structural and physiological differences between fast and slow twitch muscle fibres The contraction of skeletal muscle in terms of the sliding filament theory The myogenic nature of cardiac muscle The coordination of the heartbeat The use of ECGs in the diagnosis of abnormal heart rhythms The calculation of cardiac output The control of heart rate and ventilation rate by the cardiovascular control centre and the ventilation centre in the medulle oblongata The role of adrenaline in the fight or flight response The meaning of negative feedback and positive feedback control The principle of negative feedback in maintaining systems within narrow limits The meaning of homeostasis and the maintenance of a dynamic equilibrium in exercise The gross and microscopic structure of the mammalian kidney Selective reabsorption in the proximal tubule The control of mammalian plasma concentration Switching genes on and off by DNA transcription factors and the roles of peptide and steroid hormones Due to the detail included in this lesson bundle, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to cover the content If you would like to sample the quality of the lessons in the bundle, then download the skeletal muscle, coordination of the heartbeat, role of adrenaline and control of mammalian plasma concentration lessons as these have been uploaded for free
Digestion in mammals (AQA A-level Biology)
GJHeducationGJHeducation

Digestion in mammals (AQA A-level Biology)

(0)
This lesson describes how large molecules are hydrolysed to smaller molecules by the enzymes produced by the digestive system in mammals. The detailed PowerPoint and accompanying worksheets are part of the 1st lesson in a series of 2 which have been designed to cover the content of point 3.3 of the AQA A-level Biology specification and this lesson includes descriptions of the action of amylase, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases. The lesson has been designed to walk the students through the functions of the digestive system at each point of the digestive tract up until the duodenum and focuses on the action of the enzymes produced in the mouth, stomach and small intestine and by the accessory organs of the system. Time is taken to describe and explain key details, such as the fact that endopeptidases cleave peptide bonds within the molecules, meaning that they cannot break down proteins into monomers. The lesson is filled with exam-style questions which will develop their understanding of the current topic as well as checking on their knowledge of related topics which have been previously-covered such as the structure of the biological molecules and qualitative tests. In addition to the detailed content and regular questioning, the lesson PowerPoint contains guided discussion periods and two quick quiz competitions which introduce a key term and a key value in a fun and memorable way This lesson has been specifically planned to prepare the students for the very next lesson where the mechanisms for the absorption of the products of digestion are described.
Simple & Giant covalent substances (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Simple & Giant covalent substances (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson explains the properties of typical covalent simple molecular compounds and introduces diamond and graphite as giant substances. The lesson PowerPoint and accompanying resource have been primarily designed to cover point 1.34 of the Edexcel GCSE Chemistry & Combined Science specifications but also links to points 1.35 - 1.37 where the structure and uses of the giant covalent substances are described. The lesson begins with a quick recap task where students have to recognise a covalent bond from a description and fill the missing part. Moving forwards, they are introduced to the fact that covalent molecules can be simple or giant. They are then presented with a table showing some properties of covalent molecules and having to group them as simple or giant in the short space of time that the table remains displayed on the board. This task challenges their observational skills, something which will again be tested later in the lesson as they study the structure of graphite and diamond. Time is taken to ensure that key details such as the strong covalent bonds in both sets of molecules is understood and that it is the weak intermolecular forces which are actually responsible for the low melting and boiling points. The last part of the lesson introduces diamond and graphite as allotropes of carbon and students will briefly learn why one of these conducts electricity whilst the other doesn’t. If you want a lesson about these allotropes in more detail, then please look for “Diamond and Graphite”. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and so misconceptions are quickly identified.
Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)

9 Resources
Hours of research and planning has gone into each and every one of the 9 lessons that are included in this lesson bundle that covers topic 18 of the CIE A-level Biology course . Conscious that some students do not fully engage in the topics of biodiversity, classsification and conservation, the lessons have been designed to contain a wide range of tasks which will motivate the students whilst the content of the following specification points are covered: 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity can be considered at three different levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use Spearman’s rank correlation to analyse the relationship between the distribution and abundance of species and abiotic or biotic factors Use Simpson’s Index of diversity 18.2: Classification Describe the classification of species into the 8 taxonomic divisions Outline the characteristic features of the three domains Outline the characteristic features of the kingdoms Explain why viruses are not included in the three domain classification and outline how they are classified 18.3: Conservation The reasons for the need to maintain biodiversity Discuss methods of protecting endangered species The role of non-governmental organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons in this bundle, then download the Spearman’s rank correlation, features of the kingdoms and WWF, CITES and conservation lesson as these have been uploaded for free
AQA GCSE Combined Science REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Combined Science REVISION LESSONS

20 Resources
This bundle of 20 fully-resourced lessons have been designed to allow students who are studying the AQA GCSE Combined Science course to assess their understanding of the topics found within the following units of the specification: B1: Cell Biology B2: Organisation B4: Bioenergetics B5: Homeostasis and response B6: Inheritance, variation and evolution B7: Ecology C1: Atomic structure and the periodic table C2: Bonding, structure and properties of matter C3: Quantitative chemistry C4: Chemical changes C5: Energy changes C6: The rate and extent of chemical change C7: Organic chemistry C8: Chemical analysis C9: Chemistry of the atmosphere P1: Energy P2: Electricity P4: Atomic structure P5: Forces P6: Waves These lessons use a range of exam questions, understanding checks, quick tasks and quiz competitions to engage and motivate the students
Moles REVISION (GCSE)
GJHeducationGJHeducation

Moles REVISION (GCSE)

(1)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to allow students to assess their knowledge of the topic of moles and related topics as covered in the GCSE Chemistry and GCSE Combined Science courses. An understanding of moles and their associated calculations is critical for the success of a student in these two courses. The following topics are covered in this revision lesson: Avogadro’s law and constant Mole calculations involving Avogadro’s constant Mole calculations involving the formula, moles = mass x molar mass Mole calculations involving the constant and the formula Moles in balanced symbol equations and identifying molar ratios of reactants or reactants to products Calculating masses in reactions Gas calculations (molar volume) Concentration of solutions (in mol per decimetre cubed) Students will be engaged through the range of activities which includes quiz competitions such as “Fill the VOID” where students have to complete some equations which have pieces missing and also “In the BALANCE” where students have to balance equations in order to work out the number of moles on each side of the reaction. This lesson can be used at any time during the year as a revision material, in the lead up to mocks or as a final revision lesson before the GCSE terminal exams.
Stabilising, directional and disruptive selection (OCR A-level Biology)
GJHeducationGJHeducation

Stabilising, directional and disruptive selection (OCR A-level Biology)

(0)
This engaging and fully-resourced lesson looks at examples of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 1st part of point 6.1.2 (e) of the OCR A-level Biology specification which states that students should be able to demonstrate and apply an understanding of the factors that affect the evolution of a species. The lesson begins by making a link to a topic from module 4 as the students are challenged to use the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions. This lesson has been designed to tie in with another uploaded lesson on genetic drift which covers the second part of this specification point.
Topic 5.2: Respiration (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.2: Respiration (AQA A-level Biology)

7 Resources
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The phosphorylation of glucose and the production and oxidation of triose phosphate The production of lactate or ethanol in anaerobic conditions The Link reaction The oxidation-reduction reactions of the Krebs cycle The synthesis of ATP by oxidative phosphorylation The chemiosmotic theory Lipids and proteins as respiratory substrates The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free